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ABSTRACT
The real-time detection of when a player is struggling presents an
opportunity for game designers to design timely and meaningful
interventions, as well as to provide targeted support that improves
student learning and engagement. In this paper, we present a strug-
gle detector in the context of students playing the learning game,
Wake: Tales from the Aqualab. Using the interaction log data of
the game, we engineered four sets of features that captured dis-
tinct aspects of gameplay and trained prediction models to identify
human-coded cases of students struggling, cross-validating at the
student level. Our best-performing detectors have shown some ca-
pability in identifying student struggles with modest performance,
at an AUC (Area Under the Curve) value of 0.635. We discuss cur-
rent limitations of this approach, as well as next steps towards
providing real-time support within the game.
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1 INTRODUCTION
In recent decades, educational games have gained popularity as
a means of engaging students in learning activities that are both
entertaining and educational [9, 15, 32, 35], and educational game
design generally aims to promote both learning and engagement
[28]. To achieve this, it is important to design games that strike
a delicate balance between challenging players at their current
competence while maintaining a playable level [3]. [33] recommend
that the game’s difficulty level should match the player’s current
ability to achieve this optimal level of engagement.

Finding the exact point where a game’s difficulty is high enough
to challenge the player, but not so difficult as to discourage them,
requires careful attention to the game’s design [11]. To prevent
difficulty from becoming too high, educational games frequently
incorporate interventions such as hints [17] and feedback [1, 30].
However, there are numerous challenges associated with develop-
ing effective hints and feedback for game players, such as what the
content of the messages should be, or when the messages should
be delivered [18]. In order to select the right time to provide a hint,
it is useful to identify when a player is struggling during the game,
so that scaffolding can be provided at that point, and withheld oth-
erwise [29]. This approach ensures that interventions are only used
when they are likely to be effective, promoting optimal learning
and engagement outcomes.

The overarching aim of this study is to build automated detectors
that identify instances of struggle that students encounter while
playing. Our investigation focuses on detecting struggle within
Wake: Tales from the Aqualab (referred to asWake within this paper
for brevity), a game where students take on the role of a scientist
working at an ocean-floor research station to learn about scientific
research practices.

https://doi.org/10.1145/3573382.3616080
https://doi.org/10.1145/3573382.3616080
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2 RELATEDWORK
In recent years, there has been considerable interest in detecting
learner struggle. Much of this work has involved a behavior termed
“wheel-spinning”, which refers to the phenomenon where a player
or learner spends a significant amount of time working without
making progress in the learning environment [14]. In the case of
games, [25] detected player wheel-spinning within the context of
the game Physics Playground using a logistic regression model by
incorporating features such as player’s prior attempts and past per-
formances. [24] utilized Classification and Regression Tree (CART)
to detect wheel-spinning based on player’s progression and perfor-
mance in the adaptive game-based learning system Mastering Math
(MM).

There has been considerable interest in detecting wheel-spinning
in other types of learning environments as well, particularly in-
telligent tutoring systems. For example, [14] proposed a logistic
regression model to predict wheel-spinning using features such as
students’ performances, seriousness, and the number of problems
practiced in two intelligent tutors. [26] predicted wheel-spinning in
adaptive online courseware, leveraging problem-level features such
as student performance, hint usage, response time, and problem
difficulty.

There has also been considerable attention focused on predicting
if a student will quit a game level or learning activity, a behavior that
is often indicative of struggle [2]. In one such study, [20] developed
both level-specific and level-agnostic models to identify student
quitting in the game Physics Playground, using a combination of
data on a student’s gameplay and overall performance on the level.
Another study evaluated the accuracy of commonmachine learning
algorithms with simple, generic features in predicting quitting and
performance on assessment tests within two science learning games,
the Crystal Cave and Wave Combinator [13]. Beyond games, [34]
predicted student dropout based on discussion forum participation
in a Massive Open Online Courses (MOOC) class. [8] predicted both
whether students would quit an online mathematics assignment
without achieving mastery and whether they would wheel-spin by
applying deep learning to interaction data.

Extensive research has also been conducted to detect affective
states, such as confusion and frustration, which are commonly
associated with the experience of struggle. A significant body of lit-
erature in this area has focused on games. [6] proposed sensor-free
detection models for identifying affective states in the virtual envi-
ronment EcoMUVE, utilizing features derived from interaction with
the game. [19] compared the performance and effectiveness of video-
based and interaction-based affect detectors in Physics Playground.
[16] employed a deep neural network to detect learner frustration
in the game-based medical learning environment TC3Sim. Within
the adventure game Danger Island, [7] constructed a deep-learning
model based on Electroencephalography (EEG) data to recognize
player confusion.

3 CONTEXT
3.1 Overall Game Design
This project takes place within the larger context of developing and
studying a middle-school science practices game, Wake: Tales from
the Aqualab. In Wake, players take on the role of a young scientist

named Olivia who grew up at an aquatic research station in a Kelp
Forest and has just begun practicing science herself. Over the course
of the game, players discover new research sites and acquire new
scientific tools, learning about complex phenomena and scientific
practices alongside Olivia. Wake is designed to be played during
one or more 45-minute class sessions, and takes approximately 10
sessions to complete.

Wake contains a total of 14 research sites distributed across 4
major ecosystems: Kelp Forest, Coral Reef, Bayou, and Arctic. At
each of these major areas, a research station has been established to
study and sometimes manage the local ecosystems. Upon arriving
at each station, a lead researcher presents the player with different
“jobs” that they need help completing. Jobs are often aligned with
a fundamental question, such as “What is causing the urchins to
multiply so rapidly?” Each job requires the player to discover new
information about the ecosystem, present a claim, and provide
evidence to support their claim. Players make these discoveries
by making direct observations at the research sites, conducting
various experiments, and generating various forms of scientific
models. Each new insight is catalogued in a tablet-like device as
a “species” or a “fact” and can then be presented as evidence for a
claim. In this way, the discovery of a new species or fact is a primary
form of progression in the game. These jobs gradually expand on
the amount of information available to players and the complexity
of relationships and ecosystems that they are required to model to
maintain an overall level of challenge as players gain proficiency
with both the game tools and the learning content.

To scaffold players, Wake breaks down the potentially large
investigations required by a job into a series of “tasks.” Tasks are
displayed on the screen as a short prompt, such as “Count the
Loggerhead Turtles at the Oil Rig,” and are completed when the
player navigates to a particular location or makes a specific set
of discoveries. While some jobs have a specific linear ordering of
tasks, many others assign several tasks a player may work toward
in parallel, and still others feature one large task that contains a
number of implied subtasks. Therefore, at any moment, there are
many ways for a player to make progress.

A second wayWake provides scaffolding is thorough dialog with
the various characters in the game, most often through a guide
character known as “V1ct0r.” V1ct0r appears whenever the player
acquires a new tool to instruct them in how the tool is used, acting
as training for the different interfaces and high-level concepts in
the game. V1ct0r and other characters also appear during some
conceptually challenging moments to help explain some part of the
system. V1ct0r can also be summoned at any time during gameplay
for help, and theywill attempt to respondwith contextually relevant
guidance informed by the current job, currently available tools, and
current discoveries.

3.2 Identifying When Students Struggle
In the context of studying player interactions withWake, this re-
search attempts to provide a useful mechanism for differentiating
productive and unproductive behaviors within the game environ-
ment. Due to its open-ended nature and science-based exploration
context, players inWake may approach the game’s challenges in
different ways or even spend time exploring and experimenting the



Struggling to Detect Struggle in Students Playing a Science Exploration Game CHI PLAY Companion ’23, October 10–13, 2023, Stratford, ON, Canada

world ofWake outside of any specific job, simply out of curiosity.
These manifold approaches to gameplay make it challenging to
differentiate between students who are productively experimenting
and playing with game parameters from students who are stuck and
require help from some external agent. For example, a student may
run experiments which do not align to their current job because
they just observed a novel species and are trying to identify all
relevant information; this behavior would look similar to a student
who is unsure which experiments are needed to provide evidence
for their current job’s task. A detector which is able to identify these
moments of struggle could therefore be used to deliver targeted
feedback to stuck players, or players who are simply off-task, while
allowing curious players to continue their explorations.

4 METHOD
4.1 Data Collection
Wake leverages the Open Game Data system for player interaction
data logging [12]. At a technical level, this involves the integration
of the opengamedata-unity package into the game, which com-
municates with cloud-based server infrastructure to capture and
record meaningful events that take place during a play session. We
refer to these events, collectively, as telemetry data.

Structurally,Wake sends telemetry events using a game-agnostic
schema. Drawing inspiration from the framework propose by [23],
Wake records events that can be placed in three general categories:
Player Actions, System Events, and Progression Events. In total,
there are 33 distinct player actions, 12 system events and 6 pro-
gression events that are sent as telemetry data for storage on the
Open Game Data server as they occur. Player events include general
navigation (e.g., the player piloting to a specific research site), as
well as specific actions that can be taken by the player when inter-
acting with each of the game’s mechanics (e.g., adding a species
data in the modeling tool, selecting specific evidence during an
argument). System events include both formative feedback (e.g.,
the evidence selected by the player is rejected in an argument) and
scripted events (e.g., a guide character appears when the player
enters a new location). Progression events describe when the player
discovers a new fact or species, and when the player completes
a single task or entire job. Each of these events is packaged with
metadata including the time and sequence in which the event oc-
curred, a player identifier, and details about the event and game
state. Combined, these events form a time-sequenced description of
all the significant interactions that take place within a play session,
in the game’s own language.

For this study, anonymous game telemetry data were collected
during the month of June 2022 as part of iterative game develop-
ment and testing in Wisconsin, Maine, and Massachusetts. A total
of 3859 gameplay sessions were captured from 501 students during
this period, with an average session duration of approximately 40
minutes. The majority of these sessions were part of a classroom
study that included four teachers and 336 of their students from a
single middle school in Massachusetts. The remainder of the data
was generated from smaller and less structured testing implemen-
tations at the other locations. 1,009,026 individual telemetry events
were collected from these players.

4.2 Text Replay of Interaction Logs
To make it easier to examine and explore the data, we utilized a
technique called text replays [5]. This involves presenting human-
readable segments of interaction data, known as clips, to facili-
tate both the initial exploration and the final coding process. This
method has been used in previous studies to label student affect,
disengagement, and learning strategies, such as gaming the system
[4], confrustion [21], player goals [10] and self-regulated learning
strategies, such as whether a student is using a table to plan their
analyses [27]. This approach achieves a level of reliability simi-
lar to classroom observations and is 2-6 times faster compared to
other methods of generating labels, such as classroom observations,
screen replay, and retrospective think/emote-aloud protocols [5].

The length and granularity of the text replay clips can vary
depending on the researcher’s intended predictions. For this study,
analysis was focused on struggle behaviors that occurred within
each task that a student was required to solve. A single job can be
comprised of multiple tasks, each of which have a separate goal state
that advances the game. The text replays were set up at the grain
size of entire tasks, with each clip containing a student’s actions as
theyworked through a single task. Switching jobs, starting new jobs,
or completing a job were all treated as the end of an existing task,
and the beginning of a new one. Coding at the level of task required
a comprehensive examination across questions and game settings,
as students were free to move between different areas, menus,
and options of the game within these tasks. The text replays were
presented using a Pythonwindow, which showed a subset of actions
and allowed the coder to page to later or earlier actions within the
clip. A pair of human coders labeled these clips as “Struggle”, “Not
Struggle”, or “Bad Clip” if the clip was fragmented in some way
(such as if a student had just completed a job, but not yet accepted a
new one). Cases of disagreement were then presented to members
of the Wake team and consensus coded via group discussion. Clips
were selected with interval sampling – coders selected line numbers
incrementing by 10,000, and then coded starting from the first
clip that began after that point. For example, in the first round of
coding, clips that began at lines 10037, 20038, and 30015 were coded.
Subsequent coding rounds staggered the starting point for these
intervals. In the second round of coding, we instead started at 6500
and incremented by 10000 from there.

4.3 Data Preparation
4.3.1 Feature Engineering. A total of 58 features were engineered
for each data sample across four categories: General, System Use,
Patterns & Habits, and Contextual. The General features provide
insight into players’ overall interactions with different game me-
chanics and functionalities, while System Use features capture how
players interact with in-game systems and panels. The Patterns
& Habits features aim to identify recurring patterns and habits in
students’ gameplay, such as the frequency and duration of pauses be-
tween actions. Finally, the Contextual features offer supplementary
information, including players’ locations during specific actions.
All features are engineered based only on past and present actions
and do not incorporate future data since the models will be used
to investigate the relationship between current struggle and later
performance and for real-time interventions.
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4.3.2 Feature Aggregation. Given that struggle is a complex out-
come that arises from a sequence of actions and is therefore likely
to be predicted by interrelated action patterns, we aggregate the
features at the task level. In the case of contextual features, which
track moment-to-moment details such as the player’s current lo-
cation for every action, we averaged these features across all of
a student’s actions. For example, if a student spent 20 of their 40
total actions in the Experiment Room, the feature in_exp_room
was assigned a value of 0.50. Following feature aggregation, the
resulting dataset comprised 16,704 data points, with a feature space
of 58 dimensions.

4.4 Machine Learning Algorithms
To evaluate the efficacy of the struggle detector, we employed five-
fold student-level cross-validation. This involved randomly dividing
the students into five groups, with each group serving as a test set
while the remaining four groups were used to develop the detector.
By cross-validating at this level, we aimed to assess the degree to
which our detector can generalize to new students.

We applied nine popular classification algorithms commonly
used in educational data mining, including step regression, logistic
regression, XGboost, Naïve Bayes, J48 decision trees, KNN, sup-
port vector machine, random forest, and artificial neural networks,
to develop the sensor-free struggle detectors. Feature selection
was performed using forward selection within each fold of cross-
validation, which repeatedly added the feature that contributed the
most to the model’s goodness on the training set until no further
improvement was possible.

We used AUC ROC as metrics to measure the effectiveness of
the detector. The AUC gauges the likelihood that the model assigns
a higher predicted probability to a randomly selected positive case
than a randomly selected negative case. A model with an AUC
of 0.5 performs at the chance level, while a model with a score
of 1.0 is perfect. The AUC is often used in conjunction with the
Receiver Operating Characteristic (ROC) curve, which is a graphical
representation of the performance of a binary classification model
that plots the precision (or positive predictive value) on the y-axis
and recall (or sensitivity or true positive rate) on the x-axis for
various thresholds used by the model to make predictions.

To gain a deeper understanding of the engineered features and
their relationship to the constructs and detectors, we calculated
the SHapley Additive exPlanations (SHAP) values for each feature
within each test set [22]. These values were averaged across 5
testing sets and ranked based on their absolute values. A positive
average SHAP value for a feature indicated that the feature was a
positive predictor of struggle. In other words, the model was more
likely to detect struggle when the value of that feature was higher.
Conversely, features denoted with a negative sign had negative
average SHAP values. This indicated that these features predicted
an absence of struggle. Features with a SHAP value of 0 had no
direct impact on the model’s prediction, but they may still be useful
for providing context or aiding in model interpretability.

4.5 Attempts to Improve Model Performance
Among the 288 clips examined, only 10.76% of them were identified
as instances of struggle, resulting in a highly imbalanced dataset.

This poses a significant challenge in machine learning, as most
algorithms tend to perform poorly on minority class prediction in
these cases. In an effort to improve our model performance, we
resampled the minority cases through both duplicating existing
examples and synthesizing new ones using the Synthetic Minority
Oversampling Technique (SMOTE).
Additionally, we adopted an iterative feature engineering approach
as proposed by [31]. The approach employs misclassifications from
previous models to uncover patterns of behaviors that current fea-
tures fail to capture. Based on these patterns, we engineered 4 new
contextual features in an attempt to enhance model performance.
The 4 additional features, in addition to the original set of 58 fea-
tures, were forwarded to the feature selection process to assess
their impact on the models’ performances.

5 RESULTS
5.1 Model Performance
The Naïve Bayes algorithm demonstrated the best performance for
struggle detection when trained and evaluated on non-resampled
dataset, using features selected through forward feature selection.
For that algorithm, the AUC ROC obtained from 5-fold student-level
cross-validation for the struggle detectorswas 0.635, with a standard
deviation across folds of approximately 0.05. These results indicate
that the detector was capable of detecting struggling students more
accurately than chance levels. However, the results also highlight
the fact that there is still considerable room for improvement.

Table 1 presents the features selected through the forward feature
engineering approach, organized into four categories and ranked
based on their absolute SHAP values. The directionality of each
feature, indicating its impact on themodel’s predictions, is indicated
in the last column using positive and negative signs. Given that
Naïve Bayes is the best performing model, we can assume that the
presence or absence of one feature has no impact on the presence
or absence of any other feature.

Out of the 22 features listed, 6 features were drawn from the
General category, 9 from the System Use category, 5 from the Pat-
terns & Habits category, and 2 from the Contextual category. The
System Use category accounts for the highest number of features
among all categories, indicating the significant influence of play-
ers’ system-using behaviors on the predictive models. For example,
players’ interactions with the game’s built-in functionalities, or
their requests for assistance from the guide V1ct0r.

6 DISCUSSION AND CONCLUSION
In this paper, we have presented automated detectors that aim to
identify student struggle solely from log files inWake: Tales from the
Aqualab. We have engineered multiple sets of features to capture
the players’ behavior patterns and contextual information over time,
and our best-performing detectors are better than chance at iden-
tifying struggle. However, our initial attempts to further improve
model performances did not yield significant results. In particular,
employing resampling techniques on the minority classes led to a
decrease in AUC, while the features generated through iterative
feature engineering failed to pass the forward feature selection
stage in any fold. This observation leads us to suggest that the
struggle cases are of high complexity or poor quality, which limits
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Table 1: The features in the final detectors and their respective directionality according to SHAP values.

Category Feature Definition Directionality
How many times has the player dived? -
How many times has the student changed rooms? -

General
(6)

System Use
(9)

Patterns & Habits
(5)

Contextual
(2)

How many seconds has the student spent during the current task?
How many times has the player opened the world map?
How many times has the player visited the modeling room?
How many times has the player visited the argumentation room?

How many times has the player opened the job summary tab?
How many times has the player opened the model tab?
How many times has the player opened the job board?
How many times has the player opened the bestiary?
How many times has the player opened the environment tab?
How many times has the player asked for help?
How many system-generated “fact rejected” messages (submitted fact is incorrect
and/or rejected during argumentation) has the player received?
How many times has the player opened the species tab?
How many facts have the player obtained?

How many experiments has the player conducted?
How many argumentations has the player conducted?
How many times has the player run an experiment and not received a fact?
How many times has the player run a model and not achieved synchronization?
How many times has the player changed the parameters of the experimentation tank?

How many seconds has the player spent in the current station?
Is the player currently in the kelp forest, bayou, arctic, or coral station?

-
-
+
-

-
-
+
+
+
+
+

+
+

-
-
-
-
+

+
-

the potential of SMOTE to generate new examples that can address
the class imbalance and enhance the model’s performance. More-
over, further exploration and experimentation are necessary to gain
a deeper understanding of the underlying factors contributing to
whether the struggle can be detected and for identifying effective
strategies for improving model performances in this context.

The current performance of this model is not sufficient for use
in a targeted intervention for most situations, where a prediction
is being made for an individual student. However, it is sufficient
to use in aggregate analyses that take model confidence levels
into account, such as calculating the average rate of struggle in
different levels and comparing them. Future research could explore
alternative definitions for struggle, further feature engineering, and
alternative methods for aggregating data.

6.1 Limitation
The study presented here has some potential limitations that need
to be acknowledged. One significant limitation is the lack of a clear
and standardized definition of the term “struggle.” This ambiguity
may have restricted the accuracy of our labels, as it is possible
that some players who were labeled as “struggling” may only have
been experiencing confusion or frustration due to the game’s user
interface or design, rather than their own skill level.

Moreover, the generalizability of the model we have developed
may also be limited by the lack of demographic information for

the players. It is important to test models on a diverse range of
students to ensure its effectiveness across different backgrounds
and experiences. In this case, based on how the game is used, we
were unable to obtain this information – without it, we cannot
be confident that the model will perform well on students from
different populations. In other words, this lack of demographic
information makes it impossible to check for algorithmic biases
which can occur when a model’s performance varies significantly
across mutually exclusive groups that are separated by factors that
cannot be easily changed, such as gender and race/ethnicity.

6.2 Future Direction
This paper is part of a broader project that aims to leverage in-
sights gained from game log data for the purpose of understanding
and identifying players’ behaviors in order to provide real-time
support and foster data-driven iterative design. Despite its modest
performance, our struggle detection model is the first step towards
identifying factors that may lead to potential disengagement or
frustration among students during their gameplay experiences. Our
current detector’s performance is insufficient to support real-time
intervention, but it is sufficient to identify situations where students
are struggling in aggregate, and better understandwhy. Through do-
ing so, we can improve our game’s design to help scaffold students
past these difficulties. Ultimately, it is our hope that by identifying
when students are struggling, we will be able to provide players
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with more enriching gameplay experiences and enhance knowl-
edge and interest in science among the tens of thousands of K-12
learners learning fromWake.
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