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Knowledge Tracing is perhaps the most widely used student model in the field of educational data mining. In 

this paper we report on the effects of using only a subset of data in training the Bayesian Network that 

represents this student model. The standard practice is to use all of the students’ data for a given skill to fit the 
model. We analyze two datasets; one from the Algebra Cognitive tutor and the other from the Genetics 

Cognitive tutor. We found that in both datasets, the difference in accuracy between using all the students' data 

versus only the most recent 15 data points of each student was not significantly different. Using only 15 
responses however, resulted in an EM training time which was 15 times faster than using all data. This result 

suggests that the Knowledge Tracing model needs only a small range of data in order to learn reliable 

parameters. The implications of this result is a substantial savings in model training time that allows for more 
complex models to be fit or individualized models to be trained online. 
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1. INTRODUCTION 

Knowledge Tracing (KT) [Corbett & Anderson 1995] is perhaps the most widely used 

student model in the field of educational data mining and has been used in many 

cognitive tutors [Koedinger, Anderson, Hadley & Mark 1997]. The standard practice is to 

use all of the students’ data for a given skill to fit the model; and a model trained for each 

skill in the system. 

In [Ritter, Harris, Nixon, Dickison, Murray & Towle 2009] it is discussed that reducing 

the parameter space of KT by means of clustering gives us models of student 

performance that are as good as the standard approach that gives us a different fit for each 

skill. So instead of 9600 parameters for the 2400 skills in the dataset, each fit differently, 

they settle on a set of 92 parameters, without changing the behavior of the system. In a 

similar vein, we aim to reduce the Knowledge Tracing training time by reducing the 

training data while retaining predictive performance.  

In this paper we explore another question: how sensitive is the KT model to the amount 

of data used in its training. We train the model with different limits imposed on the 

maximum length of interaction instance sequences that is allowed for each student, and 

see their effect on prediction power of the system. To our knowledge this work is the first 
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to explore using less data to do better when training a student model. As it is later shown, 

limiting the amount of data can reduce the training time of KT model using Expectation 

Maximization (EM) substantially. We analyze two datasets; one from the Algebra 

Cognitive tutor and the other from the Genetics Cognitive tutor. 

1.1 KNOWLEDGE TRACING 
Corbett & Anderson’s Bayesian Knowledge Tracing model is one of the most popular 

methods for estimating students’ knowledge. It underlies the Cognitive Mastery Learning 

algorithm used in Cognitive Tutors for Algebra, Geometry, Genetics, and other domains 

[Koedinger & Corbett 2006].  

The canonical Bayesian Knowledge Tracing (BKT) model assumes a two-state learning 

model: for each skill/knowledge component the student is either in the learned state or the 

unlearned state. At each opportunity to apply that skill, regardless of their performance, 

the student may make the transition from the unlearned to the learned state with learning 

probability	�(�). The probability of a student going from the learned state to the 
unlearned state (i.e. forgetting a skill) is fixed at zero. A student who knows a skill can 

either give a correct performance, or slip and give an incorrect answer with 

probability	�(�). Similarly, a student who does not know the skill may guess the correct 

response with probability	�(�). The model has another parameter, �(�	), which is the 
probability of a student knowing the skill from the start. After each opportunity to apply 

the rule, the system updates its estimate of student’s knowledge state, �(�
), using the 
evidence from the current action’s correctness and the probability of learning: 
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The four parameters of BKT, (�(�	), �(�), �(�), and	�(�), are learned from existing 
data, historically using curve-fitting [7], but more recently using expectation 

maximization (EM). For EM the parameters were unbounded and initial parameters were 

set to a	�(�)	of 0.14, �(�)of 0.09, �(�	)of 0.50, and �(�)	of 0.14. These initial values 
were the average parameter values across all skills in prior modeling work conducted on 

a different algebra tutor [Pardos, Heffernan, Ruiz and Beck, 2008]. 

2. DATASETS 

2.1 KDD DATASET (BRIDGE TO ALGEBRA) 
This dataset comes from the Carnegie Learning Bridge to Algebra Tutor, which is an 

Intelligent Tutoring System (ITS) used by many students over the course of the 2007-

2008 school year. This was the dataset that was one of the KDD 2010’s “development” 

datasets [Pardos & Heffernan, In Press]. 

This dataset contains 1323 unit-skills (from now on, we call each unit-skill in this dataset 

simply a skill), and 1,817,476 data points (student actions). In order to demonstrate the 

effects of using less data, we limited our experiment only to those skills that have a 



median of student response sequence of 40 or more. So we ended up with 33 skills with 

663,491 data points (36% of all data points in the original dataset). 

In this paper we refer to this dataset as KDD dataset. 

2.2 GENETICS 2009 DATASET 
This data was taken from a Cognitive Tutor for Genetics [Corbett, et al. 2010]. The 

dataset contains the results of in-tutor performance data of 76 students on 9 different 

skills, with data from a total of 11,581 student actions. 

Six of the skills included in this dataset have average interaction sequence lengths of 

around 10. The 3 remaining skills have 20, 30, and 41 as average length of interaction 

sequence. But these 3 larger skills cover 60% of data points in the dataset. 

For the students in this dataset, we also have the results of a problem solving post-test, 

covering some of the skills that were exercised in the tutor. Having this data, we could 

correlate student knowledge estimates of different configurations with the post-test data, 

as it is discussed in section 4.3. 

 

3. METHODOLOGY 

In our work, we group the dataset based on skills and fit a separate set of KT parameters 

for each skill. So an instance of interaction with the tutor in the dataset is a specific user’s 

performance record when encountered with problems that exercise a specific skill. Here’s 

where the idea using less data comes into the picture: should we use the full length of 

data in each instance, or should we limit the length of the data we feed into the EM? In 

order to explore the effects of imposing this limitation on the prediction-ability of KT 

model, we ran our experiments with different limitations on the number of data points 

used: from using all the data in each interaction sequence to using only the most recent 5 

items. 

For example, suppose we have two student with interaction instance sequences of 

� = 0110011101111 and ! = 1010110 for a skill in the dataset (0 here denotes an 
incorrect response (wrong answer or request for help), and 1 denotes a correct response). 

Now if we limit the interaction sequence length to 5, the following two sequences are 

presented to the EM as interaction instance data related to the skill: �"(�) = 01111 and 
�#(!) = 10110. But if the limit is set at 10, we will have the following sequences: 
��	(�) = 0011101111 and ��	(!) = 1010110. Notice that in the second case, whole 
sequence of B is used (length = 7). 

For KDD dataset we tried fitting parameters with these interaction sequence length limits: 

5, 10, 15, 20, 25, 35, 40, 75, 100, 150, 200, 400, and no-limit. The maximum interaction 

sequence in this dataset was 679, but as it is shown in the results section, not so many 

instances of interactions with that length are present in the dataset. 

For Genetics dataset, the range of limits tried for this study is shorter because this dataset 

is considerably smaller and the lengthiest interaction sequence contains 88 data points. 

The limits we’ve tried for this dataset are: 5, 10, 15, 20, 25, 30, 40, 50, 60, and no-limit.  

3.1 TRAINING AND TESTING OF THE KNOWLEDGE TRACING MODELS 
For both datasets, we used trained KT models with different levels of student interaction 

data cut-off. Then all those models are used to predict student actions with cross-

validation. For this prediction (or trace) phase, we used two different version of the 



model: one that even limits the input to the trained model when it demands a prediction 

from it, and one that feeds the whole available history of student performance to the 

model, regardless of the limitation imposed at training stage. 

Then we calculated the Root Mean Square Errors (RMSEs) at the student level and 

averaged them to get the number that is reported here. This way we can be sure that the 

reported accuracy is not biased towards students who have more those points for that 

skill. It also enables us to calculate a measure of statistical significance for the results. 

We use Kevin Murphy’s Bayes Net Toolbox for Matlab
1
 for this experiment. 5-fold 

cross-validation was used for the Genetics dataset and a 2-fold for KDD to evaluate KT 

prediction performance. We used 2-fold cross-validation for KDD dataset solely to 

reduce the total amount of time needed to run all the experiments on that large dataset. 

The folds were created by randomly assigning students (and their associated responses) to 

folds. In each run of the cross-validation, one fold served as the test set and the other 

folds served as a training set. 

4. RESULTS 

4.1 KDD DATASET RESULTS 
Root Mean Square Errors (RMSE) of cross-validated prediction of in-tutor performance 

of students are shown in figure 1, as the red trend line, and table 1. The x-axis in the 

graph (figure 1) shows the number of data points across all skills included in the EM 

training. As it is evident in the graph, increasing the amount of the data in training does 

not contribute to the model’s accuracy, past a certain point (around a max of 75 responses 

per student). The prediction difference between five and 75 data points per student is not 

significant; however, the increase in runtime is substantial, shown by the blue line. 

 
Figure 1. KDD In-Tutor Prediction Results 

Figure 1 also shows the time it takes for EM to fit parameters for different amounts of 

data. It shows the potential exponential time complexity of the BN toolbox EM 

algorithm. We speculate that the change from linear to exponential time increase may 

have been attributed to the dataset exceeding the machine’s 8 GIG memory capacity and 

disk swapping occurring. 
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Table I KDD In-Tutor Prediction Results (sorted by RMSE) 

Sequence Limit data points RMSE 

75 397,921 0.288648 

100 467,471 0.288871 

150 554,999 0.288948 

200 598,774 0.288977 

400 653,664 0.289098 

No limit 663,491 0.289123 

40 257,395 0.289811 

35 230,149 0.290057 

20 138,571 0.290328 

15 105,442 0.290411 

25 170,511 0.290428 

10 71,276 0.290854 

5 36,066 0.295847 

 

When we put a maximum sequence limit of 10 on the training data, the trained model 

only became 0.6% less accurate than the fully trained one. The best accuracy was 

achieved by training with a limit of 75 on the each student’s sequence length (represented 

60% of all data points). Note that this was more accurate than using all the data yet it 

takes one-fifth of the time required to run the full training. 

As mentioned in section 2, the KT model is a Bayesian Network with four parameters. So 

all differences in prediction ability of models, or lack thereof, is a consequence of the 

four parameters that is fit by EM. Figure 2 shows a graph of these four parameters as they 

are fit by using different amounts of data. The parameter values are an average of the 

parameter values in the 33 different KT skill models. The most dramatic change occurs in 

the prior parameter, which decreases monotonically. One explanation for the decrease in 

prior with longer sequences is that the longer the sequence, the more likely the data is 

produced by a student who is off task. Since students stop answering questions of a given 

skill when they master it, the students still answering questions after 75 opportunities are 

likely low achieving students with a low prior. 

 
Figure 2 Avereage learned parameters with varrying amounts of data 



The slip rate, however, was extremely stable; remaining around 0.08 for almost any 

amount of data. One interesting implication of this, at least when fitting models to 

Cognitive Tutor data, is that KT could be reduced to a three parameter model by learning 

the slip with very little data and then fixing that parameter to the value learned while the 

other three parameters are trained on more data. 

4.2 GENETICS DATASET RESULTS 
In the case of the genetics dataset, we are dealing with much less data than the KDD 

(Bridge to Algebra) dataset. Figure 3 shows that error does decrease steadily with more 

data, however, the decrease is very small and none of the errors are statistically 

significant. However, while the RMSE axis is zoomed to a scale that demonstrates the 

small change in error (the errors fall between 0.31 and 0.32 RMSE), the time axis (on the 

left) ranges between 10 minutes with 5 data point cut-off and 100 minutes with full data. 

This is a 10x training time increase to achieve no significant increase in prediction. 

 
Figure 3 Genetics In-Tutor Prediction Results 

In other words, limiting response sequence lengths to 5 (denoted by the first notch in the 

trend lines), which results in using only 29% of data points available, does not affect the 

prediction ability of the model at all. The best accuracy for in-tutor prediction is attained 

when using a sequence limit of 40, which includes 95% of data points; this is an increase 

in average RMSE of 0.00393 or 1% as shown in Table II.  
Table II Genetics In-Tutor Prediction Errors (sorted by RMSE) 

Sequence Length Limit Number of Data Points 

Included 

RMSE 

40 10959 0.31198 

50 11336 0.31203 

60 11506 0.31206 

30 10322 0.31223 

No Limit 11581 0.31228 

25 9734 0.31230 

20 8898 0.31263 

15 7875 0.31287 

10 6156 0.31462 

5 3386 0.31621 

 



Figure 4 shows the average KT learned parameters for the Genetics dataset. A similar 

trend can be observed here as in the Cognitive Tutor dataset. The prior drops with more 

data and the slip remains nearly constant throughout. Unlike the Cognitive tutor, the 

guess rate decreases and the learn rate increases with more data. More investigation is 

necessary to explain these trends. 

 
Figure 4 Average of Learned Parameters for Genetics Dataset 

4.3 PREDICTING POST-TEST RESULTS FOR GENETICS DATASET 
In predicting the post-test, we account for the number of times each skill will be utilized 

on the test. Of the nine skills in the dataset, one is not exercised on the test, and is 

eliminated from the model predicting the post-test. Of the remaining seven skills, four are 

exercised once, two are exercised twice and one is exercised three times, in each of the 

two posttest problems. These first two skills are each counted twice and the latter skill 

three times in our attempts to predict the post-test. We use Pearson’s correlation as the 

goodness metric since the model estimates and the post-test scores are both numerical. 

Correlation between each model and the post-test is given in table III. 

The best correlation happens when we use a sequence limit of 20 in training (77% of 

data). The fact that using less data gives us better predictions for the Genetics Tutor 

students post-test was mentioned 
2
in a recent work focusing on ensemble methods by the 

same authors [Baker, Pardos, Gowda, Nooraei, Heffernan In Press].  

In all our experiments at predicting post-test we tried limiting the data in the tracing step 

as well: when using the trained model to predict student performance (we call this action 

tracing) we limited the amount past information we feed to the Bayesian Network. In 

other words, the same limit was imposed in tracing phase too. The results were no 

different from the normal full trace, so we eliminated any mention of them in this paper. 

But here, when predicting post-test results related to genetics dataset, we see an 

interesting phenomenon that a trace limited to only 5 most recent student data, yields a 

much better prediction of post-test results (table III and figure 5). 
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Figure 5 Genetics post-test correlation 

Table III Genetics Post-Test Prediction Correlations 

Sequence Length Limit Data Points Correlation with Post-test 

5 (limited trace) 3386 0.61356 

20 8898 0.55217 

10 6156 0.54004 

25 9734 0.53303 

30 10322 0.52965 

40 10959 0.52793 

60 11506 0.52766 

50 11336 0.52762 

No limit 11581 0.52758 

15 7875 0.52207 

5 (normal trace) 3386 0.4761 

 

 

5. CONCLUSION AND FUTURE WORKS 

There are many practical reasons why one might be interested in decreasing the time it 

takes to fit/refit a model. In previous research [Pardos & Heffernan In Press], when we 

wanted to work with different variations of KT, long EM training runs were a huge 

impediment to rapid research cycles, so it motivated us to explore more in this area. In 

this paper we showed that fitting KT using EM with only a small subset of data gives us a 

model practically the same as a model fit with the whole available data. We also show 

that using only the most recent 5 data points to trace on provided the best correlation to 

post-test. This suggests that student’s past history can be severely discounted when 

predicting their future performance. Tractability of individualized student models have 

been limited in part by the resources and time required to fit models. With our result that 

a good fit model can be achieved with very few data points, individualized models 

trained on the client can now be considered.  

Our findings were largely unexpected; using 10% of the data in the case of the KDD 

dataset and 29% of the data in the case of the Genetics dataset lead to the same predictive 

power as using all the data. Given these results, ITS administrators can more wisely train 

their models, knowing the potential low benefit and high cost of using a student’s entire 

response sequence to train their models. Researchers interested in predicting post-test 

measures from tutor data should also benefit from this finding that severely discounting 

the past can not only save model training time but also produce improve prediction 

results.  
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