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Abstract
Emotions play a central role in shaping learning within digital en-
vironments. Although their effects may depend on how students’
emotional experiences manifest into concrete behaviors, the links
between these dimensions remain underexplored. This study inves-
tigates the most common behaviors during episodes of boredom,
confusion, frustration, and engaged concentration in an educational
game, as well as associations with situational interest, self-efficacy,
prior knowledge, and learning gains, using interaction logs and
sensor-free affect detectors. Results show that boredom is linked to
off-task roaming, both consistently associated with lower motiva-
tion and learning. In contrast, behaviors during engaged concen-
tration, frustration, and especially confusion vary widely, shaped
by motivational traits and prior knowledge and offering diverse
associations with learning. Concrete regulatory responses in these
states—such as systematizing findings with in-game tools, skim-
ming domain content to resolve doubts, or testing hypotheses—are
positively associated with learning and motivation, reflecting stu-
dents’ ability to regulate emotions and address cognitive challenges.
However, less constructive responses, such as aimless wandering,
were tied to lower knowledge and motivation, underscoring the
need for additional support. These findings extend existing affec-
tive theory by underscoring the importance of considering the
behavioral dimension when analyzing students’ emotions in digital
learning environments.
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• Applied computing→ Interactive learning environments;
• Human-centered computing→ Human computer interaction
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1 Introduction
Emotions in digital learning environments have been extensively
studied within the learning analytics community, where there has
been considerable effort to understand how students’ affective ex-
periences interact with cognitive, metacognitive, and motivational
processes [19, 28]. Research consistently shows that low-arousal,
negatively valenced emotions (e.g., boredom) hinder learning across
these dimensions, whereas positively valenced emotions (e.g., en-
gaged concentration) generally support learning outcomes [28].
However, high-arousal negative emotions (particularly confusion
and frustration) do not exhibit such straightforward relationships
with learning.

Several frameworks have sought to explain how these affective
experiences relate to learning outcomes [15, 38, 43], with increasing
attention being paid to possible differences in the forms affective
states may take. For example, researchers have suggested that differ-
ences between canonical and pleasant frustration [22] or between
several different kinds of confusion and frustration [2, 38] may
arise from different causes and leading to varied impacts on learn-
ing. These frameworks seek to explain the complex relationships
between affect and learning outcomes from motivational and cogni-
tive perspectives, but they are not always concretely linked to the
behavioral dimensions through which these emotions ultimately
shape learning.

Some studies have looked at the interplay between affect and
behavior, showing that boredom often precedes or motivates dis-
engaged behaviors such as gaming the system or going off task
[5], while engaged concentration tends to mitigate these behaviors
while fostering more constructive ones [4, 21]. However, the range
of behaviors students adopt during episodes of specific affective
states, and the factors shaping which behavior a student chooses
as a response to specific affect remain underexplored, particularly
for emotions like confusion and frustration.

To expand understanding in this area, the present study exam-
ines the specific moments when students experience confusion,
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frustration, boredom, and engaged concentration, within the con-
text of an educational game used by middle school students. We ask
three research questions: (1) which behaviors are most common
during episodes of each affective state; (2) which behaviors are as-
sociated with different motivational and learning measures; and (3)
how these relationships shed light on the gaps on existing theory
around affect during learning. By analyzing the actions students
select during specific affective episodes and linking them to both
learning outcomes and motivational measures, we seek to provide
a more nuanced account of why different students choose differ-
ent actions in response to the same emotion, and how emotions
shape learning through the behaviors they elicit. A better under-
standing of these complex relationships can help fill in some of the
gaps within current affective theory, with practical implications for
educational design and adaptive learning systems.

2 Related Work
2.1 Theoretical Perspectives of Affect in Digital

Learning Environments
Several frameworks have sought to explain how affective states
arise and evolve in learning environments. One of the earliest is
Csikszentmihalyi’s [15] Flow Theory, which posits that flow, a pos-
itive state of immersion in a task, emerges when task difficulty and
learner skill align and fosters autonomy, and sustained concentra-
tion, while insufficient challenge leads to boredom and excessive
challenge leads to anxiety. Pekrun [43] extends this framework in
discussions of Control Value Theory (CVT), suggesting that flow
depends not only on the balance of skill and difficulty but also on
perceived relevance. In his empirically based model, Pekrun argues
that boredom may occur in both overly simple and overly difficult
tasks, but it may also occur when a student is asked to do something
that is matched to their skill but is not perceived as valuable by the
student.

Building on these perspectives, D’Mello and Graesser [20] pro-
posed a dynamic model of affect in computer-based learning, em-
phasizing transitions among engaged concentration, confusion,
frustration, and boredom. In this model, confusion (cognitive dise-
quilibrium) arises when learners encounter an impasse; this may
catalyze deeper learning if resolved, or escalate into frustration
and eventually boredom if left unresolved. The model positions
engaged concentration as generally positive and boredom as con-
sistently negative, while treating confusion and frustration as am-
bivalent states—potentially constructive or detrimental depending
on whether they transition back to engagement or toward disen-
gagement.

Most recently, Ocumpaugh et al. [38] introduced the Skills, Diffi-
culty, Value, Efficacy, and Time (SDVET) model, which integrates
cognitive and motivational constructs to explain when and why
learners transition between affective states. Like Flow Theory, SD-
VET predicts boredom when skills exceed task difficulty, but it also
acknowledges that frustration can occur when skills fall below task
demands. Unlike Flow Theory, it does not assume that the space
between these extremes is fully occupied by flow or engagement.
Instead, drawing on CVT, it argues that even when skill and dif-
ficulty are balanced, canonical “unpleasant” frustration may still

arise if learners lack perceived value, whereas valued and interest-
ing tasks are more likely to elicit flow. When students encounter
tasks above their current skill level but still perceive them as mean-
ingful and manageable (high value and self-efficacy), they are more
likely to experience “pleasant” frustration [22], choosing to persist
rather than withdraw. However, when task value or self-efficacy is
low, students may experience “intolerable” confusion or frustration,
which can devolve into boredom, even without an apparent cog-
nitive impasse. The SDVET model also suggests that the buffering
effect of value and self-efficacy is time-limited. Even highly self-
efficacious students may struggle to sustain pleasant frustration
as either novelty or interest fades. The cognitive and emotional
burden of prolonged self-regulation can erode this capacity and
eventually lead to disengagement.

Recognizing similarities between certain forms of both confu-
sion and frustration, Baker et al. [2] propose reframing them not
as separate, internally uniform states but as part of a “confrustion
constellation” of interrelated affective subtypes that share com-
mon features yet differ in their triggers and effects. Confusion and
frustration often overlap because learners may experience them
sequentially or simultaneously. However, some forms of confusion
and frustration can also diverge substantially. For instance, Gee’s
[22] notion of pleasant frustration aligns more closely with brief
episodes of confusion that are quickly resolved and keep the student
engaged rather than with deep, unpleasant frustration stemming
from low value or motivation. Baker et al. [2] therefore argue that
some forms of frustration are closer to certain forms of confusion
than to other types of frustration (and vice versa). This perspective
supports viewing confusion and frustration as a constellation of
related subtypes rather than as two rigidly distinct affective states.

2.2 Associations between Affect and Learning in
Digital Learning Environments

Empirical findings across a wide range of digital learning environ-
ments provide strong support for many aspects of the frameworks
described above. For example, Karumbaiah et al. [28] conducted a
comprehensive review of the impacts of confusion, frustration, en-
gaged concentration, and boredom across multiple contexts. They
found consistent evidence of a positive association between en-
gaged concentration and a variety of outcomes, including perfor-
mance on knowledge tests (e.g., [12]), learning gains (e.g., [21, 27]),
standardized state tests (e.g., [30, 41]), and even long-term indi-
cators such as college enrollment years later [51]. While a small
number of studies report null findings (e.g., [23]), none have identi-
fied negative associations between this affective state and outcomes.
In addition, motivational factors such as initial self-efficacy and
situational interest have been linked to longer and more frequent
episodes of engaged concentration and more transitions into this
state [55–57], which in turn are associated with learning gains and
higher motivational scores on post-tests [36, 38]. This evidence
consistently suggests that positive motivational factors, such as
situational interest and self-efficacy, enhance the likelihood of ex-
periencing engaged concentration, which in turn drives positive
learning outcomes.

Similarly consistent (but in the opposite direction) is the evi-
dence that boredom is detrimental to learning. Multiple studies
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in Karumbaiah et al.’s review show negative associations between
boredom and learning gains [9, 23], exam scores [30, 47], and col-
lege enrollment [51]. Although some studies have found null effects
[24] or in one unusual case a slightly positive effect (seen in two
different learning systems [21, 41]), there is no strong evidence
of boredom having positive impacts on learning. Further research
on motivational factors has found that low situational interest or
self-efficacy can act as precursors to boredom, in turn reinforcing
lower interest and engagement in learning [38, 54, 55].

Although the associations are relatively consistent for boredom
and engaged concentration, much less is clear about frustration and
confusion. Karumbaiah et al. [28] highlighted strong disagreements
in the literature regarding these two states. For confusion, many
studies have reported null effects for cognitive [17, 18] and motiva-
tional measures [55], while others have found positive associations
with learning [21, 24], particularly when confusion is brief and suc-
cessfully resolved [32]. However, some studies have documented
negative associations between confusion and exam performance
[30, 47], long-term outcomes such as college enrollment [51], and
particularly longer episodes of confusion for students with lower
situational interest and self-efficacy [56]. These results suggest the
existence of a zone of optimal confusion in which confusion has the
potential to support deeper understanding when learners are able
to resolve their confusion, whereas confusion that persists without
resolution may become detrimental and contribute to disengage-
ment [1].

Similarly, most studies on frustration report null findings (e.g.,
[17, 24, 30]), although some have identified negative associations
with within-platform performance [9, 40]. However, in one game
context, frustration was positively associated with performance and
learning [53]. Additionally, students with higher self-efficacy are
more likely to experience longer episodes of frustration that even-
tually transition into positive affect (e.g., concentration or delight;
[38, 56]) during gameplay. This pattern suggests that frustration,
under certain conditions and mainly for educational games, can
contribute to more positive and motivating learning experiences,
supporting the existence of Gee’s theorized pleasant frustration
[22].

Even when confusion and frustration are considered together,
evidence is similarly mixed. Richey et al. [45, 46] found that al-
though confrustion was negatively associated with post-test and
delayed post-test scores overall, it tended to occur more frequently
when students learned from erroneous examples, which in turn
supported better test performance. Likewise, Liu et al. [34] reported
that brief episodes combining confusion and frustration were posi-
tively related to learning. Thus, while the effects of boredom and
concentration are consistent, the effects of confusion and frustra-
tion seem to be more conditional. They hinder learning in some
contexts, but some mechanisms, such as self-efficacy or motivation,
timely resolution of impasses, or supportive task design, can also
render them constructive.

2.3 Behavioral Pathways of Emotions in
Learning

Multiple studies have examined how affective states and behaviors
interact to shape learning outcomes. For instance, Fancsali [21]

found that boredom increases off-task behaviors, whereas engaged
concentration reduces gaming the system (where students exploit
platform features to generate correct answers without genuine
engagement), which has been consistently linked to negative out-
comes. These findings align with other work showing that on-task
behaviors are most often associated with engaged concentration
[4, 7, 48]. Although Fancsali [21] observed a small negative asso-
ciation between boredom and gaming the system overall, studies
across other learning environments typically find that boredom
precedes this behavior [4, 7, 48]. Similarly, Bosch and D’Mello [9]
found that curiosity and engagement typically followed reading
or coding, whereas confusion and frustration followed errors and
preceded hint use. Of these emotions, only frustration was neg-
atively associated with learning, while confusion had a positive
association. These findings suggest that when confusion motivates
help-seeking and is resolved before escalating, the outcome can
be beneficial. However, when confusion persists and develops into
frustration, learning outcomes are more likely to be negative.

Although frustration sometimes appears detrimental to learning,
its role in educational games may be more complex, as pleasant frus-
tration can arise from games’ narrative and immersive features [22],
making relationships less straightforward than in other learning
contexts. For example, in the context of Crystal Island, an open-
world scientific inquiry game [49], Cloude et al. [13] reported that
both confusion and frustration were positively associated with time
spent on science-related actions, suggesting that these emotions
may sometimes support constructive behaviors. For the same game,
Sabourin and Lester [50] used student self-reports to examine how
different responses to affective episodes can either support or hin-
der learning. The authors found that students who stayed engaged
in scientific tasks after experiencing confusion were more likely to
report later engaged concentration and achieved greater learning
than those who disengaged to explore the virtual world. In contrast,
when students experienced frustration, persisting with scientific
tasks was unhelpful, while taking a break by exploring the virtual
world appeared to yield better learning outcomes. Because the self-
reports in this study were not very granular, Sabourin and Lester
[50] also applied machine learning-based detectors that could dis-
tinguish between positive and negative affect, also showing that
taking a break during negative affect was beneficial.

More recently, Zambrano et al. [55] developed detectors for Crys-
tal Island that can identify specific affective states. These detectors
have been used to examine affective dynamics across behavioral
archetypes, revealing that students engaged in scientific actions
are more likely to experience confusion and frustration, whereas
disengaged students who tend to roam are more likely to experi-
ence boredom [57]. Despite these advances, little is known about
the specific actions students take during affective episodes, how
these behaviors may depend on factors such as initial motivation
or prior knowledge, and how they differentially impact multiple
student outcomes.

3 Methods
3.1 Learning Platform
In this study, we analyzed data from 122 middle school students
who interacted with Crystal Island as part of their regular science
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Figure 1: Overview of Crystal Island with the expert “golden pathway” for game completion as operationalized by [52].

curriculum. Crystal Island is a single-player, open-world game
designed to spark interest and support inquiry-based learning in
microbiology [49]. In the game, players assume the role of an inves-
tigative scientist working to diagnose a mysterious illness affecting
a research station on a remote island. Their goal is to identify the
disease-causing pathogen, how it is being transmitted, and what
is the most suitable treatment to address the outbreak. Through
gameplay, students build microbiology knowledge related to dis-
ease transmission, treatment, and prevention, while also developing
scientific reasoning skills to analyze symptoms, identify carriers,
and track patterns of infection.

The gameplay begins in a tutorial area where players are intro-
duced to the fundamental mechanics of the game, such as inter-
acting with non-player characters (NPCs) to gather information,
collecting readings, submitting concept matrices (required at the
end of each reading to assess understanding and can be submitted
multiple times), picking up objects, and testing hypotheses. Upon
completing the tutorial, players are directed to the infirmary to
receive further instructions, although they are free to explore the
island as they choose (see Figure 1). As players collect information,
they are expected to gather objects across the island and scan them
in the laboratory, formulating and testing hypotheses regarding
the potential virus or bacteria causing the outbreak.

3.2 Data Context
The data used in this study was collected in 2023 at an urban middle
school in the southeastern United States. The participant group was
gender-balanced, with 53 students identifying as male, 66 as female,
and 5 choosing to self-describe. The sample was demographically
diverse, including strong representation from groups historically
underrepresented in STEM: 46% of students identified as Black,
16% as Hispanic, 5% as Asian, 5% as Multiracial, and 1% as Native
American.

Four members of the research team were present during the
classroom implementation: two as non-interactive observers and
two who introduced the activity and provided technical support
as needed. At the start of the study, students completed a series of
established, validated measures: a demographic questionnaire; a

science content pre-test scored from 0 to 17; and surveys assessing
self-efficacy [11], situational interest [33], and game literacy. The
game literacy scale ranged from 0 (no weekly video game play) to
3 (more than 10 hours per week). These instruments were selected
to assess students’ baseline knowledge, interest, self-efficacy, and
familiarity with games—factors hypothesized to influence their
engagement with the learning experience.

Upon completing the initial surveys and pre-test, students played
Crystal Island over two class periods across two days (approx. 60
min. of gameplay in total). During gameplay, students were asked
to self-report their affective states at specific points (i.e., in-game
milestones) to reduce disruption to their learning experience.

After playing the game, they completed a set of post-game sur-
veys. These included a science content post-test (identical to the
pre-test) to assess knowledge gains, along with five subscales from
the Intrinsic Motivation Inventory (IMI; [16]): interest-enjoyment
(IE), perceived competence (PC), effort-importance (EI), pressure-
tension (PT), and value-utility (VU). Unlike the earlier self-efficacy
and situational interest measures, which assessed general attitudes,
these post-game subscales focused on students’ perceptions of their
experience with the game and were therefore only administered
after gameplay. To reduce the risk of survey fatigue or adverse
reactions from excessive questioning [44], the self-efficacy and situ-
ational interest surveys were not repeated. All post-game subscales
were revalidated using Cronbach’s alpha within this dataset (see
[54]).

3.3 Analysis
Affective labels were generated by trained cross-validated, sensor-
free affect detectors that estimate the probability of students ex-
periencing each affective state (one vs. all detectors) in 20-second
intervals [55]. The use of a 20-second window follows standard
practice in affective research [6] and affective chronometry [10].
For the behavioral data, we adapted Zambrano et al.’s [54]) code-
book, which was used to analyze student behaviors independently
of affective data (see Table 1). Specifically, we adjusted the time
scale of the codes Long Time Outside and Inside No Action to better
align with the granularity of the affect detection and the duration
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Table 1: Codebook (Adapted from [54]).

Behavior Definition

Inside No Action 20 consecutive seconds inside any location without conducting any additional action (original definition by
Zambrano et al. was 2 minutes).

Outside No Action Returning to Tutorial: Return to Tutorial after visiting any other location
Excessive Time Outside: 20 consecutive seconds outside (original definition by Zambrano et al. was 2 minutes).

Rushing
Rushed Reading: Less than 10 s of reading for each article.
Rushed Conversation: Less than 5s interacting with an NPC (repeated conversations are not considered)
or less than 1SD below the median time spent speaking with a specific NPC

Long Conversation Over the median of time speaking with the specific NPC or more than 20 consecutive seconds.
Worksheet Students add an element to the worksheet.

Scan After Exploration

Scan After Reading: Students read for at least 5 min before testing a hypothesis (at any point of the gameplay,
not necessarily during the confusion or frustration episode).
Scan After Conversation: Students had at least 3 min of conversations before testing a hypothesis (at any point
of the gameplay, not necessarily during the confusion or frustration episode).

Repeated Testing

Repeated Hypothesis Testing: 3 consecutive hypothesis tests without adding data to the worksheet, reading
again, or conversing with an NPC, with a separation of less than 20 s between each scan
Repeated Concept Matrix Testing: 3 consecutive concept matrix submissions in less than 10 seconds.
(Previously labeled No Reflection in [54]).

of affective episodes. Whereas Zambrano et al. applied these labels
after two minutes of inactivity, we applied them at 20-second in-
tervals to align with the affect labeling periodicity (clip duration).
Because the original label Long Time Outside no longer implied
extended inactivity when applied every 20 seconds, we renamed it
Outside No Action. Similarly, Zambrano et al.’s code No Reflection
was renamed Repeated Testing, which more accurately describes the
observed behavior—repeatedly testing hypotheses or submitting
concept matrices within a short period.

After labeling each affective episode with at least one correspond-
ing behavior, we calculated the average frequency of each behavior
across students’ episodes of confusion, frustration, engaged con-
centration, and boredom according to the SR-based detectors. We
used relative behavior frequencies per clip to control for differences
in the typical duration of each affective state [56]. This adjustment
ensured that longer-lasting states (e.g., boredom) did not dispro-
portionately inflate behavior counts. We excluded nervousness and
happiness from the analysis because they were relatively infre-
quent; over 40% of students never reported experiencing either of
these states.

We next conducted a Friedman 𝜒2 test to assess differences in
behavior frequency during confusion, frustration, boredom, and
engaged concentration. This non-parametric test accounts for re-
peated measures from the same students (one observation per affec-
tive state) and enabled us to analyze how behavior varied across the
four emotions. Next, we calculated Kendall’s 𝜏 correlation coeffi-
cients between the behavior frequencies and five external measures:
Situational Interest, Self-Efficacy, Interest Engagement, pre-test
scores, and learning gains. These measures were selected because
they most directly capture students’ interest and learning outcomes
before and after gameplay. We intentionally limited the number of
external measures to reduce the risk of false discoveries. Although
the zero-inflated distribution of behaviors was less pronounced in
the SR affect data, it was still present for Outside No Action, Rushing,

and Repeated Testing when split by affective state. As these distri-
butions produced many tied ranks, we used Kendall’s 𝜏 instead of
Spearman’s 𝜌 [29].

We also assessed the monotonicity of all identified significant
associations using generalized additive models (GAM), after ap-
plying a rank transformation to the data, to observe monotonic
associations as linear. This analysis examined whether students
who never displayed the behavior during episodes of the corre-
sponding affect (i.e., occurrence=0) exhibited patterns that differed
from those expected based on the estimated Kendall’s 𝜏 , which
could indicate non-linearity or other relationships beyond what
a single correlation coefficient can capture. This additional step
is particularly important given the zero-inflated distributions of
less frequent behaviors (e.g., Rushing, Repeated Testing, and Long
Conversations). The GAMs were fitted with polynomial splines, al-
lowing the relationship to take the shape of a polynomial of up to
degree 5, to model the association between variables.

Since we computed 35 correlations for each affective state (7
behaviors × 5 measures), we applied the Benjamini-Hochberg pro-
cedure to control the false discovery rate [8]. However, because
this correction is overly conservative when applied to the total
number of correlations per affect (i.e., it would require p<0.001 to
reach significance), we also conducted a Monte Carlo simulation
(10,000 runs) to estimate a 95% confidence interval for the number
of significant results that could be expected by chance, given the
total number of comparisons [35].

4 Results
4.1 Behaviors during Each Affective Episode
Table 2 shows the average frequency of each behavior per affective
clip (20 seconds) during episodes of confusion, frustration, engaged
concentration, and boredom. A Friedman chi-square analysis re-
veals statistically significant differences in the frequency of all be-
haviors across the four affective states. Inside No Action—remaining
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Table 2: Average number of occurrences of each behavior per clip for each affective state.

Construct Confusion Frustration Concentration Boredom Friedman Statistic p-val
Inside No Action 0.674 0.654 0.509 0.286 68.47 0.000
Outside No Action 0.202 0.263 0.387 0.621 76.00 0.000
Worksheet 0.050 0.043 0.038 0.029 12.44 0.006
Scan After Exploration 0.048 0.014 0.015 0.008 10.91 0.012
Long Conversation 0.027 0.022 0.043 0.044 36.50 0.000
Repeated Testing 0.009 0.002 0.005 0.001 13.15 0.004
Rushing 0.006 0.008 0.013 0.016 8.52 0.036

inside a location without performing any action beyond basic move-
ment during a 20-second interval—is the most common behavior
during episodes of confusion (0.674), frustration (0.654), and en-
gaged concentration (0.509), but not during boredom (0.286). In-
stead, Outside No Action—the other inactive behavior, occurring
outside any game location—ismost frequent during boredom (0.621),
at a level comparable to Inside No Action in the other three affective
states. The frequency of Outside No Action during confusion (0.202),
frustration (0.263), and concentration (0.387) is significantly lower,
roughly equivalent to Inside No Action during boredom. Although
both are inactive behaviors, the affective patterns suggest we might
interpret them differently. Inside No Action may indicate reaching
an impasse (e.g., uncertainty about next steps), requiring students
to pause and/or reflect as they work to manage or resolve confusion
and frustration. By contrast, Outside No Action may represent a
deeper disengagement, in which the student chooses to remain
outside rather than engage with locations where scientific actions
are possible (i.e., inside the various virtual buildings), explaining
its higher prevalence during boredom.

Among themore active behavioral categories, notable differences
emerged in the use of theWorksheet mechanic—a tool that helps
students organize and systematize their findings—which was more
common during confusion (0.050), frustration (0.043), and, to a lesser
extent, engaged concentration (0.038), compared to boredom (0.029).
This pattern suggests that students often turn to the worksheet
when they reach an impasse and need to structure their findings to
consider potential next steps. A similar trend was observed for Scan
After Exploration—hypothesis testing after gathering information
from readings or NPCs—which occurred more frequently during
confusion (0.048) and, to a lesser extent, engaged concentration
(0.015) and frustration (0.014), than during boredom (0.008). Re-
peated Testing also appears more often during confusion (0.009) and
concentration (0.005) than during boredom (0.001), though it was
infrequent during frustration (0.002). Both Scan After Exploration
and Repeated Testing reflect hypothesis-testing behaviors that can
help resolve confusion or may simply represent normal activities
when students are actively engaged.

In contrast, two other active behaviors were more strongly as-
sociated with boredom and engaged concentration—two affective
states that are not thought to be similar but that typically share low
arousal—than with confusion and frustration. Long Conversations
with NPCs, where students can ask about symptoms, game mechan-
ics, or microbiological concepts, are least frequent during confusion
(0.027) and frustration (0.022). Its association with boredom (0.044)
and engaged concentration (0.043) suggests students may engage in

these conversations (perhaps going through the entire script) when
their arousal is low. Likewise, Rushing, a behavior that encompasses
faster behaviors in both conversations and in-game reading mate-
rials, is also more common during boredom (0.016) and engaged
concentration (0.013) than during confusion (0.006) or frustration
(0.008). This pattern suggests that when arousal is low, students
either rush through material (possibly with the intent to cover a
lot of content quickly) or slow down (perhaps to better reflect on
the content if engaged, or as a signal of boredom and potential
disengagement).

4.2 Behaviors Associated with External
Learning and Motivational Measures

The seven behaviors included in this study were correlated to the
five external measures of learning and motivation. These correla-
tions were calculated first for behaviors that took place across each
student’s entire gameplay experience with Crystal Island (Section
4.2.1, 35 comparisons). Next, they were calculated for the same
behaviors but only analyzing data that took place during each one
of the four affective states (Sections 4.2.2 through 4.2.5; 35×4 = 140
comparisons). Of the 175 total comparisons, 19 are statistically
significant (𝑝 < 0.05), including five correlations for the entire
gameplay, seven during confusion, three each during frustration
and engaged concentration, and one during boredom episodes (Fig-
ure 2). After applying a Benjamini-Hochberg correction for multiple
comparisons at the affect level, none of them remained significant.
However, a Monte Carlo analysis with a 95% confidence interval
shows that only 4 to 15 significant results are likely due to chance.
Therefore, the observation of 19 significant correlations is highly
unlikely to be due to random variation alone (𝑝 < 0.001). Although
it is possible that some individual results occurred by chance, the
overall pattern of findings, as presented below, is unlikely to be
attributable to random noise.

4.2.1 Behavioral Associations across the Entirety of Student’s Game
Play. Table 3 presents the correlations between behaviors aggre-
gated across the entire gameplay and the motivational measures.
Outside No Action, previously discussed as a potential indicator of
roaming or disengagement, is negatively associated with situational
interest (𝜏 = −0.152, 𝑝 = 0.014), self-efficacy (𝜏 = −0.137, 𝑝 = 0.028),
and pre-test scores (𝜏 = −0.128, 𝑝 = 0.048), while its association
with learning gains (𝜏 = −0.183, 𝑝 = 0.069) is marginally signifi-
cant. All these associations are monotonic according to the GAMs.
Students with lower motivation or prior knowledge in science were
more likely to roam around the virtual world without engaging in
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Figure 2: Associations identified between behaviors and motivational and knowledge measures, across affective states.

Table 3: Correlations between behaviors during the entire gameplay and multiple learning and motivational measures. Signifi-
cant correlations are shown in bold.

Situational Interest Self-Efficacy Interest Engagement Pre Test Learning Gains
Feature 𝜏 𝑝 𝜏 𝑝 𝜏 𝑝 𝜏 𝑝 𝜏 𝑝

Outside No Action -0.152 0.014 -0.137 0.028 -0.097 0.250 -0.128 0.048 -0.183 0.069
Inside No Action 0.109 0.078 0.113 0.070 0.058 0.494 0.101 0.120 0.109 0.281
Rushing 0.101 0.130 0.058 0.387 0.076 0.396 0.030 0.670 0.138 0.196
Long Conversation -0.049 0.429 -0.054 0.388 -0.075 0.376 -0.096 0.138 0.033 0.742
Worksheet 0.116 0.060 0.079 0.207 0.003 0.970 0.028 0.672 0.151 0.135
Scan After Exploration 0.094 0.173 0.025 0.725 0.052 0.571 0.089 0.219 0.193 0.080
Repeated Testing 0.151 0.031 0.100 0.157 0.229 0.015 0.013 0.865 0.197 0.082

science-related actions, which also hinders their potential learn-
ing. In contrast, Repeated Testing, characterized by rapidly testing
multiple hypotheses or submitting concept matrices, was positively
associated with both situational interest (𝜏 = 0.151, 𝑝 = 0.031) and
interest engagement (𝜏 = 0.229, 𝑝 = 0.015), indicating that students
who tested few hypotheses or submitted fewer concept matrices
had lower situational interest and interest engagement.

4.2.2 Behavioral Associations that Occur Only during Confusion.
We first examine the data for confusion (Table 4), as it has the great-
est number of significant correlations (N=7). Students who reported
higher situational interest before playing the game are more likely
to engage in concrete, purposeful actions during confusion episodes.
These included using theWorksheet (𝜏 = 0.168, 𝑝 = 0.026) and en-
gaging in Repeated Testing (𝜏 = 0.173, 𝑝 = 0.031), both of which
show monotonic associations.Worksheet use also displays a signifi-
cant positive association with learning gains (𝜏 = 0.269, 𝑝 = 0.019),
underscoring the value of this mechanic for addressing confusion

or cognitive impasses by helping students systematize information
and reflect. Rushing was similarly associated with learning gains
(𝜏 = 0.245, 𝑝 = 0.044), suggesting that skimming readings or con-
versations to locate needed information can also be an effective
strategy for overcoming confusion and supporting learning.

Post-test interest-engagement was also positively linked to a
concrete action like Repeated Testing (𝜏 = 0.261, 𝑝 = 0.015) but in a
non-monotonic way according to the GAM (degree 1.83). Students
who engaged in moderate levels of Repeated Testing reported the
highest interest engagement, whereas low and high levels of testing
corresponded to lower engagement, with students low in interest
also performing the least testing. This pattern suggests that some
students, when confused, remained engaged and adopted a trial-
and-error approach to solving the game’s challenges, which may
involve limited reflection in the moment but can help sustain their
engagement. However, excessive testing may also signal declining
engagement and a shift toward less constructive behaviors.
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Table 4: Correlations between actions during confusion episodes and multiple learning and motivational measures. Significant
correlations are shown in bold.

Situational Interest Self-Efficacy Interest Engagement Pre Test Learning Gains
Feature 𝜏 𝑝 𝜏 𝑝 𝜏 𝑝 𝜏 𝑝 𝜏 𝑝

Outside No Action -0.109 0.134 -0.173 0.019 0.105 0.293 -0.057 0.460 0.044 0.701
Inside No Action 0.026 0.714 0.050 0.486 -0.161 0.091 0.071 0.342 -0.178 0.104
Rushing 0.141 0.077 0.035 0.669 0.108 0.310 -0.027 0.749 0.245 0.044
Long Conversation 0.101 0.183 -0.025 0.745 0.166 0.103 -0.171 0.033 0.146 0.206
Worksheet 0.168 0.026 0.123 0.110 0.045 0.658 -0.086 0.281 0.269 0.019
Scan After Exploration 0.122 0.120 0.053 0.509 0.137 0.193 0.045 0.590 0.099 0.414
Repeated Testing 0.173 0.031 0.158 0.053 0.261 0.015 -0.031 0.713 0.166 0.174

Likewise, high self-efficacy was linked with more concrete ac-
tions during confusion. Those students with lower self-efficacy,
in contrast, spent extended periods of time roaming outside (Out-
side No Action) without participating in science-related activities
(𝜏 = −0.173, 𝑝 = 0.019), indicating that students with the lowest
confidence in their scientific abilities may struggle to identify or
initiate effective strategies to resolve confusion. Similarly, there is
a negative monotonic association between pre-test scores and Long
Conversations with NPCs (𝜏 = −0.171, 𝑝 = 0.033), suggesting that
students with less prior knowledge may find it harder to skim con-
versations and extract the specific information needed to address
their confusion.

Confusion stands out with the highest number of significant
correlations (N=7), including three (out of five) that align with re-
sults from the aggregated gameplay data (see Table 3, above). This
suggests that the behaviors during moments of confusion may drive
much of the overall correlation observed in the full gameplay data.
More broadly, confusion may be the state in which motivational
factors and prior knowledge exert the strongest influence on stu-
dents’ behaviors, and in which behaviors, in turn, might have a
strong impact on learning outcomes.

4.2.3 Behavioral Associations that Occur Only during Frustration.
Table 5 shows the correlations between student actions during
frustration episodes and their learning and motivational measures.
All three of the significant associations for frustration episodes were
monotonic. For students with high learning gains,Outside No Action
is uncommon during frustration (𝜏 = −0.256, 𝑝 = 0.042). Analysis
also shows that it is uncommon for students with high situational
interest, though this relationship is only marginally significant
(𝜏 = −0.151, 𝑝 = 0.057). This behavior is required to get between
sites of the game where more concrete scientific actions can be
conducted, but it is impossible to engage with scientific material
while outside in Crystal Island. Therefore, it is unsurprising that
spending considerable amounts of time outside does not lead to
learning gains, though it is notable that the relationship between
Outside No Action and negative learning gains was only marginally
significant when considering all of the data (Table 3). Students with
high interest engagement are also unlikely to participate in Long
Conversations during frustration (𝜏 = −0.229, 𝑝 = 0.043).

In contrast, for students with higher situational interest, Inside
No Action is more common during frustration (𝜏 = 0.176, 𝑝 =

0.020). In general, the pauses in action captured by Inside No Action

could indicate disengagement. However, the marginally positive
association between Inside No Action and learning gains (𝜏 = 0.225,
𝑝 = 0.058), suggests that this lack of action (unlike roaming outside)
can be indicative of self-regulation strategies that are eventually
beneficial for learning.

4.2.4 Behavioral Associations that Occur Only during Engaged Con-
centration. Table 6 shows the correlations between student actions
during engaged concentration episodes and their learning and mo-
tivational measures, three of which were statistically significant.
All associations were monotonic according to the GAMs, and two
of the behaviors that showed statistically significant reflect findings
from either the full data set or the analysis of another affective state.
High situational interest is correlated with low levels of Outside
No Action during engaged concentration (𝜏 = −0.256, 𝑝 = 0.042),
just as it was when the entire data set was analyzed. Likewise, this
association is also marginally significant for prior knowledge and
for learning gains (𝜏 = −0.126, 𝑝 = 0.056) and lower learning gains
(𝜏 = −0.191, 𝑝 = 0.062), suggesting difficulties stemming from
insufficient knowledge to engage more effectively with the game.
These results also somewhat mirror the analysis of the full data set,
where Outside No Action is negatively associated with both prior
knowledge and self-efficacy. Situational interest is also correlated
with high levels of Inside No Action during engaged concentration
(𝜏 = 0.184, 𝑝 = 0.004), just as it was for frustration, probably in-
dicating again moments when students take a pause to reflect on
their own process or next steps to solve the mystery of the game.

Learning gains are positively associated with Scan After Explo-
ration during concentration (𝜏 = −0.242, 𝑝 = 0.038). As this be-
havior reflects direct engagement with the scientific content of the
game, this is an expected and desired result. However, it is notable
that this behavior is only positively associated with learning gains
when it occurs during concentration episodes, without any other
significant correlation with outcomes, even when the full data set is
analyzed. This finding underscores the importance of maintaining
focus for this exploration-scanning cycle.

4.2.5 Behavioral Associations that Occur Only during Boredom.
Table 7 presents the correlations between student actions during
boredom episodes and their learning and motivational measures.
Situational interest is associated with fewer Long Conversations
during boredom (𝜏 = −0.126, 𝑝 = 0.047), but the GAM indicates
that this negative association follows a decreasing inverted U-shape
(degree=1.82). This non-monotonic finding shows that situational
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Table 5: Correlations between actions during frustration episodes and multiple learning and motivational measures. Significant
correlations are shown in bold.

Situational Interest Self-Efficacy Interest Engagement Pre Test Learning Gains
Feature 𝜏 𝑝 𝜏 𝑝 𝜏 𝑝 𝜏 𝑝 𝜏 𝑝

Outside No Action -0.151 0.057 -0.047 0.561 0.027 0.804 -0.026 0.754 -0.256 0.042
Inside No Action 0.176 0.020 0.136 0.077 0.172 0.094 -0.003 0.965 0.225 0.058
Rushing 0.082 0.338 -0.019 0.828 0.066 0.566 -0.167 0.063 -0.032 0.812
Long Conversation -0.149 0.070 -0.139 0.097 -0.229 0.043 0.021 0.811 -0.155 0.235
Worksheet -0.013 0.872 -0.091 0.274 -0.117 0.291 -0.036 0.677 -0.069 0.592
Scan After Exploration -0.020 0.817 -0.050 0.566 -0.154 0.182 0.157 0.084 -0.013 0.922
Repeated Testing -0.027 0.755 -0.100 0.253 -0.067 0.567 -0.124 0.172 0.004 0.974

Table 6: Correlations between actions during concentration episodes and multiple learning and motivational measures.
Significant correlations are shown in bold.

Situational Interest Self-Efficacy Interest Engagement Pre Test Learning Gains
Feature 𝜏 𝑝 𝜏 𝑝 𝜏 𝑝 𝜏 𝑝 𝜏 𝑝

Outside No Action -0.173 0.006 -0.107 0.090 -0.130 0.129 -0.126 0.056 -0.191 0.062
Inside No Action 0.184 0.004 0.110 0.086 0.118 0.173 0.110 0.098 0.125 0.229
Rushing 0.060 0.396 0.075 0.296 0.009 0.925 0.081 0.278 0.223 0.054
Long Conversation 0.037 0.574 0.011 0.868 0.091 0.301 0.002 0.981 0.141 0.185
Worksheet 0.037 0.582 0.080 0.245 -0.076 0.408 0.074 0.302 0.110 0.321
Scan After Exploration 0.052 0.471 0.038 0.605 0.134 0.168 0.040 0.598 0.242 0.038
Repeated Testing 0.039 0.589 0.020 0.791 0.037 0.711 -0.011 0.887 0.189 0.112

Table 7: Correlations between actions during boredom episodes and multiple learning and motivational measures. Significant
correlations are shown in bold.

Situational Interest Self-Efficacy Interest Engagement Pre Test Learning Gains
Feature 𝜏 𝑝 𝜏 𝑝 𝜏 𝑝 𝜏 𝑝 𝜏 𝑝

Outside No Action -0.032 0.607 -0.093 0.138 0.012 0.890 -0.082 0.211 -0.142 0.165
Inside No Action 0.003 0.962 0.062 0.340 0.016 0.855 0.050 0.468 0.073 0.500
Rushing 0.111 0.122 0.064 0.380 0.157 0.109 0.101 0.181 -0.128 0.277
Long Conversation -0.126 0.047 -0.009 0.891 -0.143 0.095 0.023 0.734 -0.004 0.971
Worksheet 0.040 0.536 -0.001 0.984 0.036 0.684 0.118 0.087 -0.030 0.786
Scan After Exploration 0.076 0.301 0.055 0.466 0.027 0.787 -0.004 0.958 0.140 0.249
Repeated Testing 0.078 0.296 0.035 0.642 0.088 0.386 -0.007 0.932 0.100 0.417

interest is highest among students who engaged in moderate lev-
els of long conversations reported the highest situational interest,
whereas those with lower situational interest either did not en-
gage NPCs at all or had extremely Long Conversations. No other
significant associations were identified during boredom episodes.

5 Discussion and Conclusion
In this study, we investigated the relationship between the behav-
iors adopted by students during different affective states and exter-
nal measures of knowledge and motivation, identifying how the
choices students make in response to their affect shape their out-
comes. While some behaviors occurred frequently throughout the
entire gameplay, their prevalence shifted depending on the emotion
students were experiencing. For instance, during episodes of bore-
dom, students often roamed outside locations without performing

science-related actions—a behavior that, when aggregated across
gameplay, was negatively correlated with both learning and moti-
vational measures. In contrast, when not bored, students were more
likely to remain inside locations and engage in actions potentially
linked to self-regulated learning [25], such as systematizing infor-
mation in the worksheet, testing hypotheses after having explored,
or simply pausing to reflect. In fact, even pauses that occurred inside
the virtual locations of the game were positively associated with
some motivation and learning under certain affective conditions.

Previous research has shown relatively uniform associations be-
tween boredom and learning outcomes in a variety of systems [28].
In the context of this game, boredom has already been linked to
lower levels of self-efficacy, situational interest, and learning gains
[55]. The stronger prevalence of Outside no Action during boredom
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and the negative associations between this behavior and multi-
ple motivational and learning measures suggests a pathway that
explains these relationships, where students with low interest or
self-efficacy are more likely to experience boredom, which results
in roaming behaviors that ultimately undermine learning. Addition-
ally, the lack of multiple significant associations between behaviors
and outcomes for boredom suggests that student behavior in this
state is relatively uniform and less variable. Thus, beyond other spe-
cific actions students could take, the very experience of boredom,
and the roaming it prompts, appears to undermine students’ ability
to achieve the intended outcomes of the game. This interpretation
aligns with the predictions of the CVT and SDVET models [38, 43],
extending them by identifying the off-task behavior associated with
boredom as a key driver of reduced learning outcomes.

In contrast, when students experience confusion, frustration, or
engaged concentration, they tend to remain involved in scientific
actions beyond simple roaming, or at least stay within locations
where such actions can be performed. The greater behavioral vari-
ability observed in these states (particularly in confusion) may re-
flect a more complex typology (or constellation of types) for these
emotions, in line with past models that have made distinctions
between canonical and pleasant frustration [22], intolerable and
tolerable confusion (SDVET; [38]), and the confrustion constellation
[2]. Our findings align with the SDVET model, which suggests that
students’ tolerance for impasses may be influenced by external mo-
tivation factors like self-efficacy and interest, which in turn mediate
both their behavioral responses to these emotions and the ultimate
learning outcomes they achieve.

Within episodes of confusion, self-efficacy plays an important
role in preventing students from roaming and experience intolerable
confusion. Students with lower perceived capacity for conducting
scientific tasks were more likely to disengage and move outside lo-
cations, whereas students with higher self-efficacy remained inside,
having more opportunities to perform actions that could help them
resolve the cognitive disequilibrium that triggered their confusion
and, in turn, foster learning. Sabourin and Lester [50] argued that
staying on-task during confusion supports learning. Our findings
extend this by showing that, although all five science-related ac-
tions had positive associations with learning gains when performed
during confusion, the two most (significantly) beneficial behaviors
were (a) skimming readings or NPC interactions to quickly locate
the information needed to address confusion, and (b) using the
worksheet as a reflection tool. Both represent key self-regulatory
strategies and were primarily motivated by higher situational in-
terest. In this way, we build on Sabourin and Lester’s findings by
showing that remaining on task during confusion is most beneficial
when students recognize which concrete actions can help resolve
their confusion and are motivated to pursue them. By contrast, less
efficient behaviors, such as engaging in overly long conversations
with NPCs, were more common among students with lower prior
knowledge, suggesting that these students may not recognize which
specific actions are effective for addressing confusion, or that they
may be experiencing deeper cognitive struggle.

Frustration episodes also reveal wide variability in learning and
motivational measures depending on how students behave. Consis-
tent with Sabourin and Lester’s [50] previous research (and with

broader evidence fromnon-game educational software [5]), our find-
ings indicate that off-task behavior is not always detrimental when
it emerges in response to unpleasant emotions. Although Sabourin
and Lester categorized any non-scientific action as off-task, in this
study, we distinguish between remaining within task-relevant loca-
tions andwandering outside them. This finer categorization allowed
us to observe that when off-task behavior involved staying in a
location without acting, influenced by a high situational interest,
students may achieve higher learning outcomes. In these cases, in-
activity may actually reflect intentional pauses for self-regulation,
such as reflecting on prior findings or planning next steps. By con-
trast, when situational interest is absent, students are more likely to
disengage by leaving task-relevant locations, suggesting a deeper
cognitive struggle or broader difficulties with self-regulation and
motivation,n and aligning more closely with canonical unpleasant
frustration and poorer learning outcomes.

For episodes of engaged concentration, situational interest also
plays a key role in shaping students’ actions. As observed for frus-
tration, students with higher situational interest are more likely to
remain inside task-relevant locations, whereas those with lower
interest or prior knowledge tend to roam outside. Staying within lo-
cations during concentration—particularly testing hypotheses, one
of the core scientific actions of the game—is associated with higher
learning outcomes. In contrast, leaving these locations and disen-
gaging from scientific actions appears to hinder learning, matching
the pattern for frustration. This suggests that simply being engaged
with the game is not enough. Without interest or knowledge to
guide constructive behaviors, engagement may not translate into
meaningful learning.

The differences in correlations observed for confusion and frus-
tration, along with the similarities between frustration and engaged
concentration, carry important implications for how these emotions
are analyzed within theoretical frameworks and future research. For
instance, Baker et al. [2] have argued that confusion and frustration
should not be treated as independent affective states but rather as
a constellation of multiple subtypes, where some forms of frustra-
tion may resemble certain forms of confusion more closely than
alternative forms of frustration. Our results align with this model,
suggesting that both confusion and frustration can arise from mul-
tiple causes and have multiple manifestations. For example, low
self-efficacy or situational interest may lead to unpleasant or uncon-
structive forms of frustration or confusion that hinder learning, as
also described by the SDVET model. Conversely, when confusion
or frustration is accompanied by high interest, self-efficacy, suffi-
cient knowledge, or effective self-regulatory skills, these states may
shift toward a more pleasant or constructive form, resembling more
pleasurable emotions such as engaged concentration. At the same
time, our findings underscore that confusion and frustration cannot
be treated as interchangeable. Therefore, studies that conceptualize
confrustion as a single emotion or implement machine-learned con-
frustion detectors should proceed with caution, recognizing that
multiple subtypes of these emotions with distinct manifestations
are being grouped together.

No study is without limitations. Factors such as the topic, game
mechanics, or age group may influence these results. Therefore,
although our findings align with many theoretical predictions from
prior models and match several results reported in the literature,
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they reflect only one specific context and should be replicated across
multiple settings. Additionally, some of the behavioral categories
used in this study may have conflated distinct phenomena. For
instance, remaining inside a location without performing any ac-
tion could signal reflection but could also indicate disengagement.
Future research should incorporate qualitative triangulation, em-
ploying data collection methods such as data-driven classroom
interviews [3, 39], that allow researchers to better understand why
students engaged in particular actions or behaviors. Furthermore,
both detectors and behavioral codes are derived from interaction
logs, which introduces a potential risk of circularity. However, the
fact that the detectors and codes operate at different levels of ab-
straction, along with the correlations observed with external vari-
ables, reduces this concern and supports the validity of our findings.
Even so, additional qualitative triangulation could further mitigate
this issue. Lastly, although the detectors used in this study were
tested for algorithmic bias, our ability to determine how well their
performance generalizes is limited for less represented groups or in-
tersections of groups (e.g., Latino boys or Asian girls) due to the low
number of students (less than ten) in these groups [58]. Moreover,
even when algorithms show no evidence of biased performance,
cultural differences in how emotions are expressed and understood
may affect the ground truth itself. This is particularly relevant for
students whose cultural background differs from that of the ob-
servers [14, 37] or for those from cultures in which expressing
certain emotions is socially discouraged [26, 31, 42].

In conclusion, these findings contribute to a more nuanced un-
derstanding of how affective states shape learning through the
behaviors they elicit. Whereas boredom appears relatively stable in
its (negative) associations with outcomes, engaged concentration,
frustration, and mainly confusion demonstrate greater variabil-
ity, with their impact depending on students’ initial motivation,
self-efficacy, and the strategies they adopt in response. This study
highlights the importance of examining not only which emotions
students experience but also how they translate those emotions
into concrete actions. These insights extend existing frameworks by
providing evidence on the behavioral mechanisms through which
affect operates, suggesting ways to nudge student behavior so that
they can transform moments of confusion and frustration into
constructive pathways for engagement and growth.
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