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ABSTRACT
Despite the abundance of data generated from students’ activities in
virtual learning environments, the use of supervised machine learn-
ing in learning analytics is limited by the availability of labeled data,
which can be difficult to collect for complex educational constructs.
In a previous study, a subfield of machine learning called Active
Learning (AL) was explored to improve the data labeling efficiency.
AL trains a model and uses it, in parallel, to choose the next data
sample to get labeled from a human expert. Due to the complexity of
educational constructs and data, AL has suffered from the cold-start
problem where the model does not have access to sufficient data
yet to choose the best next sample to learn from. In this paper, we
explore the use of past data to warm start the AL training process.
We also critically examine the implications of differing contexts
(urbanicity) in which the past data was collected. To this end, we
use authentic affect labels collected through human observations in
middle school mathematics classrooms to simulate the development
of AL-based detectors of engaged concentration. We experiment
with two AL methods (uncertainty sampling, L-MMSE) and ran-
dom sampling for data selection. Our results suggest that using
past data to warm start AL training could be effective for some
methods based on the target population’s urbanicity. We provide
recommendations on the data selection method and the quantity
of past data to use when warm starting AL training in the urban
and suburban schools.
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1 INTRODUCTION
New forms of digital data captured in various learning settings have
made it possible to build meaningful models to understand and op-
timize learning [18]. Interaction logs, and sensors, among others,
make it easy to generate abundant data from students’ learning
activity [2]. Yet, in many cases, the modeling effort is limited by the
availability of ground truth labels of complex educational constructs
(which are used as target variables in supervised ML) related to
student affect, cognition, behavior, and other sociocultural factors
[18]. In some cases, it is possible to attain labels at little to no cost
(e.g., college enrollment, in-system behavior, and test performance).
But for other constructs, the success in usingML depends on human
annotation that is time-consuming, expensive, and sometimes diffi-
cult depending on the pedagogical context and the complexity of
the construct being modeled. For instance, if the data labels are col-
lected in authentic settings like physical classrooms, then fieldwork
opportunities are limited in time, resource-intensive, and involve
several tedious tasks such as background verification of the ob-
servers, approvals from the school administration and institutional
review boards, and obtaining written consent from students and
parents. Even video replay coding still takes a substantial amount
of time per label [25]. Thus, despite having an abundance of student
activity data overall, the limitations in collecting human labeled
data are pushing us to find new ways to develop better performing
ML models with a smaller amount of annotated data [31].

A potential solution lies in a subfield of ML called Active Learn-
ing (AL) that tries to learn a good model from fewer data samples by
letting the ML model choose the data it trains from – thus, focusing
the labeling efforts on a smaller subset of carefully selected data
samples [28]. This subfield is not to be confused with the instruc-
tional approach of active learning in education [3]. In this paper,
AL refers to the ML-based data selection algorithms aimed at im-
proving the data labeling efficiency (discussed further in Section
2.1). AL works by training a model and choosing data iteratively: in
each iteration, it first uses the current model to choose which data
point to use next (i.e., on which data point to query for a human-
generated label), and then uses the label to update the model. In
contrast to simple classification problems (e.g., classifying apples
from oranges in an image), complex settings like education pose
some challenges to the adoption of AL. First, the labels could be
highly subjective (e.g., self-reports of student emotions). Second, the

https://doi.org/10.1145/3448139.3448154
https://doi.org/10.1145/3448139.3448154
https://doi.org/10.1145/3448139.3448154


LAK21, April 12–16, 2021, Irvine, CA, USA Karumbaiah et al.

data can be highly noisy (e.g., video data from a physical classroom).
Third, the input feature set could be large (e.g., hundreds of features
summarizing student activity in a virtual learning environment).
Thus, the complexity involved in the ML tasks in application fields
like education may require AL to seek significantly more samples
to reach reasonable quality. As such, AL has found limited use in
LA thus far, especially in the cold start situation, where the model
doesn’t have access to sufficient data yet [28].

In this paper, we investigate the use of past data on the same
construct to overcome the cold-start problem when using AL. Us-
ing past data to warm start the AL training process, even for the
same construct, may not be straightforward given the diversity
in the student population [12]. Considerable research shows that
demographic factors are often related to differences in educational
outcomes [6]. Thus, we also examine whether the differing context
of the past data used to warm start AL has an implication in build-
ing a model in the target population. This is important because
LA models need to ensure population validity as they attempt to
meet the needs of all students [22]. Given the feasibility challenges
around collecting learning data in schools, the first data that is
collected may in many cases come from convenience samples of
middle-class students (see discussion in [14]) or another highly
accessible student population where it is easy to collect labeled
data. Since AL follows a greedy approach to optimize data collec-
tion, using data from a dominant student population could drive
the model training process for a different population of learners to
a suboptimal solution - a biased model. Hence, it is necessary to
critically investigate the role of differing contexts of the past data if
we want to use them to overcome the cold-start problem. As we still
don’t know what a "population" is [1], we focus our experiments
in this study on one contextual dimension of urbanicity [cf. 22] to
examine the use of past data from urban and suburban schools to
warm start AL training in a school from the other context. Thus,
our primary research questions in this study are -

• Does using past data help warm start the AL training process
effectively?

• How does the urbanicity of the past data impact the effec-
tiveness of the warm start process?

• How much past data from a different urbanicity is appropri-
ate to use while warm starting the AL training process?

To this end, we use authentic affect labels collected through
human observations in middle school mathematics classrooms to
simulate the development of AL-based detectors of engaged con-
centration (described further in section 2), a common affective state
among students. We experiment with two AL methods and one
non-AL method (random sampling) for data selection. Our results
suggest that using past data to warm start AL training could be
effective for some methods. We also see that the urbanicity of the
past data matters. We provide recommendations on the data se-
lection method and the quantity of past data to use when warm
starting AL training in the urban and suburban schools.

1.1 Contributions
Our primary contribution to AL research with education data is the
critical analysis of the use of past data to overcome the cold start
problem of AL training with complex constructs. More importantly,

we show that mismatches in the urbanicity of the past data (and
possibly other demographic dimensions) could be detrimental to
effective model training in some cases.

2 BACKGROUND
The next subsections provide a brief introduction to AL method-
ology, its use in label data collection for affect detection, and the
importance of studying differing contexts in this paradigm.

2.1 Active Learning Algorithms
Supervised learning is a machine learning task that involves learn-
ing a function that maps the input (a set of feature values for a data
point) to a predefined output (a target label of the data point). A
commonly used function is a classifier that maps the input to a set
of categories (class labels). In the typical supervised learning setup,
all labeled data is collected before model development starts and
available at training time for the model to learn from. On the other
hand, in an AL setting, data collection and model training occur
concurrently. The label collection process is iterative since all or a
relevant subset of the training data collected thus far is available in
real-time to make a choice on which point will get labeled next. AL
methods are used in a scenario where there is limited opportunity
to obtain labeled data – typically, when one can only selectively
label a small subset of an otherwise abundant unlabeled data. The
goal of AL algorithms is to enable training a high-quality classifier
with fewer data samples by selecting those that are the most infor-
mative to the classifier. Thus, as the training of a model progresses,
the AL algorithm aims to select the next data point to obtain a label
for, such that it will be the most informative for the current model
and hopefully lead to the largest improvement in its predictive
power [28]. Several metrics of informativeness have been explored
in AL research such as entropy (or observation uncertainty) [19],
expected error reduction [26], expected variance reduction [32],
and model change [5]. A suite of algorithms has also shown promis-
ing results with a range of classifiers from logistic regression [30] to
deep convolutional neural networks [27]. In this paper, we compare
the following three approaches (two AL methods and one non-AL
method) that have previously been applied to affect detection [31].

2.1.1 Uncertainty Sampling (UncS). Uncertainty sampling is the
simplest and most commonly used AL method and has been shown
to achieve comparable or even better performance than other more
sophisticated AL methods on real-world data [30]. It uses the pre-
diction entropy of the model’s predictive distribution over each
possible class label to quantize the informativeness of each data
point. Therefore, in each iteration, it takes the current model and
predict the label distribution of each unlabeled data point and se-
lects the one that the model is the least certain of, i.e., the data point
that has the highest predictive entropy under the current model.

2.1.2 The (L-MMSE)-based method. One limitation of the UncS
method is that the accuracy of its notion of data informativeness,
i.e., model uncertainty, is highly associated with the quality of the
current model. Therefore, when themodel only has access to limited
data, this estimate of uncertainty may not be accurate. The Linear
Minimum Mean Square Error (L-MMSE) Estimator, first proposed
in [16, 17], provides a set of closed-form approximations of the
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estimation error (a proxy of model uncertainty), which is shown
to be highly accurate when the number of data points is small.
Therefore, the L-MMSE-based AL method [31] selects the next data
point as the one that leads to the maximum reduction of the MSE.
Roughly speaking, it looks at how similar each unlabeled data point
(behavior) is to previous labeled data points the model has seen,
which means we want to label the next data point that looks the
most like an outlier. It is shown to mostly outperform UncS for
student affect detection, especially when the number of data points
is small [31].

2.1.3 Random Sampling (Random). We also use a third, non-AL
method for data selection, which is simply to randomly select an
unlabeled data point from all possible points.

2.2 Student Affect Detection
Affective computing is an important area of interest in LA due to
the close connection between a student’s affect and their learning
and experience. Affect has been shown to correlate with important
educational constructs like self-efficacy [20], motivation [24], and
learning [7]. Accordingly, affect-sensitive interventions have been
designed in virtual learning environments to improve students’
learning [8], and overall experience [10]. Thus, several research
studies in the past decade have focused on building good qual-
ity affect detectors using physical and physiological sensors [21],
and interaction log data [10] - the latter being the more affordable,
less intrusive, and scalable option. Sensor-free affect detectors are
classifiers categorizing a set of student interaction features into a
predefined set of student affective states such as confusion, frustra-
tion, boredom, and engaged concentration. The features are distilled
from the interaction log data which is easily available in most vir-
tual learning environments. However, the affect labels required
for supervised training involves a labor-intensive data collection
process.

One commonly used approach to collect labels for affect is
through field observations in a real classroom by certified expert
coders. A frequently-used technique for classroom observations
is the Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP;
[23]) - an affect coding protocol wherein students are observed by
certified coders in a round-robin fashion. Each observation lasts
up to 20 seconds. The affective state labels are boredom, confusion,
frustration, and engaged concentration. During coding, some obser-
vations are labeled “NA”, corresponding to the cases where i) the
student could not be observed, ii) their affective state was unclear
to the observer, or iii) they were in an affective state other than the
states being coded. Following common practice in other detector
development work [e.g. 22], we do not use these “NA” cases in our
analysis.

2.3 Active Learning for Affect Detection
In a typical BROMP-based affect label collection, the students are
observed in a pre-defined order. Thus, it is likely that the observers
will miss opportunities to observe more informative cases. This
could be an inefficient use of the limited time of the expert coders in
an already short time window of fieldwork. Finding efficient ways
to collect affect data is necessary as there are several constraints
to conducting fieldwork in real classrooms (discussed in Section 1)

along with the limited availability of the certified BROMP coders.
AL provides an adaptive method to collect affect labels by directing
the observers’ attention to the more informative cases. For the first
time in 2019, Yang and colleagues [31] investigated the use of AL to
collect higher quality data for training affect detectors with fewer
data samples. We will be adopting a similar experimental protocol
as [31], which is the standard in most AL studies (elaborated in
Section 4.1).

In addition to experimenting with the existing AL methods, Yang
and colleagues [31] also proposed the new method of L-MMSE,
which appears to be particularly suited for the affect data collection
setting where the data is small and noisy. Their results suggest that,
when compared to other AL methods, L-MMSE leads to efficient
modeling i.e., high-quality sensor-free affect detectors with fewer
labeled data. By letting the model pick the next observation to learn
from, the AL models were able to reach a desirable performance
with as little as 70 observations which would translate to around
20 minutes of field observations with BROMP. This could tremen-
dously reduce the burden on human labeling. However, before we
adopt this methodology in our data collection practices, we also
need to critically examine any possible biases that the model could
have picked while greedily choosing the next best data sample to
get labeled.

2.4 Role of Student Population in Affect
Detection

In the previous study, the empirical analysis was conducted on com-
bined data from multiple schools in different urbanicities (urban,
suburban, and rural). In the current study, we split the data based on
the urbanicity to assess any potential discrepancies in using models
trained on one population to test in another population. This is
important because student demographics are known to influence
several aspects of affect [13]. Differences in culture are known to
influence variation in beliefs and personal dispositions towards
emotional expression and moderation [29], and the frequency and
emergence of certain affective states [15]. A recent study synthe-
sizing results across multiple affect datasets showed that affective
patterns seem to differ based on the country in which the data was
collected (US versus Philippines; [13]). We chose to explore urban-
icity as a contextual dimension in this study because past work
suggests that affect detectors do not always transfer well between
urbanicity categories [22]. In this study, we want to examine if this
result holds true in the AL paradigm, especially when using data
from different urbanicity to warm start the AL training.

3 DATA
We use a previously collected dataset from ASSISTments [4]– a
computer based learning platform which allows teachers to assign
content and monitor student performance while supplying students
with immediate correctness feedback and on-demand supports in
the form of hint messages and scaffolding [9]. The affect data was
collected in middle school mathematics classrooms using BROMP
(see Section 2.2). The dataset consists of 2511 affect observations
for 367 students. For each observation, a set of 92 features is ex-
tracted from the log of the student’s interactions with practice
problems within ASSISTments. These features summarize student
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within- and across-problem behaviors in the 20-second interval of
the affect observation, such as the number of hints they seek, time
spent on solving problems, the accuracy of responses, etc. In this
paper, we will study affect detection for engaged concentration, a
binary classification model (engaged concentration vs other affec-
tive states). Consistent with past studies in other learning systems
[11], engaged concentration has the highest incidence among all the
affective states in this dataset. However, the rate differs significantly
between the two urbanicities - 93.85% among suburban students
and 56.06% among urban students. Affect data were collected in
schools located in northeastern US - 1772 observations from 153
students in three suburban schools and 755 observations from 222
students in one urban school [22]. All the schools are non-charter
and non-magnet public schools. The original dataset also had three
rural schools that we do not include in the current analysis due
to data quality issues; past research with ASSISTments data in a
similar context reported that affect detection models (without AL)
generalize better between suburban and urban students than rural
students [22]. In this paper, we would like to investigate if this
property holds true between urban and suburban data when data
from students in one urbanicity is used to warm start the AL-driven
affect detector training process for students in the other urbanicity.

4 ANALYSIS AND RESULTS
In this section, we examine the effectiveness of using past data in the
initial batch to warm start the AL training process. In addition, we
investigate the impact of using a mismatching student population
in the initial batch used for model development for differing initial
batch sizes.We present the results for the experimentswe conducted
to answer the following research questions -

• Does using past data help warm start the AL training process
effectively?

• How does the urbanicity of the past data impact the effec-
tiveness of the warm start process?

• How much of the past data from a different urbanicity is
appropriate to use while warm starting the AL training pro-
cess?

4.1 Active Learning Experimental Design
As detailed in Section 2.1, we use three different approaches: 1) the
linear minimum mean square error (L-MMSE)-based method [31],
2) uncertainty sampling (UncS), and 3) random sampling (Random).
The first two are AL methods. We perform a train-validation-test
split of the full dataset (70%-10%-20% ratio) at the student level
i.e., the instances corresponding to an individual student are all
in a single split. We use a simple logistic regression-based affect
detector in all the experiments since it performs well and makes
it possible to use all AL methods [31]; other more advanced affect
detectors are not compatible with many AL methods. We use the
standard area under the receiver operating characteristic curve
(AUC) as the performance metric. The first step of the AL training
is to select an initial batch from the training set. The initial batch
size is a variable of interest in this research and we vary it based on
each individual experiment (details in subsections below). Using the
observations and affect labels in the initial batch, a base classifier
is trained. We train our affect detectors using gradient descent

and stop training as soon as performance on the validation set
stops improving. Next, we select a data point for each AL method
from the remaining training set based on its feature values. The
model is re-trained with the selected data point, and the AUC is
calculated using the test set. This process is repeated for 70 new
observations. Each experiment is repeated 100 times by splitting
the dataset randomly into train-validation-test sets and randomly
selecting an initial batch from the training set each time. The plots
presented in the results section contain the average AUC across
the 100 random splits.

4.2 Baselines (Experiment Set #0)
We report baseline performances on two testing setups: i) test set
drawn from only urban students, and ii) test set drawn from only
suburban students, with three training setups each: i) training set
drawn from only urban students, ii) training set drawn from only
suburban students, and iii) training set drawn from both urban
and suburban students) - leading to a total of six train-test setups.
To ensure a fair comparison across the urbanicities, we match the
randomly chosen test sets across the 100 runs for all three training
setups. We ran the following two sets of baseline models -

• Full data model (without AL) - For each of the six train-test se-
tups mentioned above, a logistic regression model is trained
using all the data in the training set. This baseline represents
the typical scenario where we collect the full data without
using AL to optimize the label data collection process. It is
the best-case scenario in terms of having all the data that
can practically be collected given the resource constraints.

• AL without warm start - AL algorithms without a warm
start. This baseline represents the scenario where we choose
to disregard any past data we have collected for the same
construct. Instead, we collect new data using AL. We run
this for all the three approaches - L-MMSE, US, and random.

In Table 1, Figure 1, and Figure 2 we present the baseline perfor-
mances (measured by average AUC) on the held-out test sets of a
logistic regression model on full data (without AL) and AL models
without a warm start.

Full data model (without AL). When compared to the within-
urbanicity performance, the between-urbanicity transfer is rela-
tively better for suburban -> urban (Table 1, exp# 5 vs exp# 4) than
urban -> suburban (Table 1, exp# 2 vs exp #1). For testing with sub-
urban data, the model trained on urban data (different urbanicity)
has 0.045 AUC value less (0.583 vs 0.628) than the one trained on
suburban data (same urbanicity). In contrast, for testing with urban
data, the model trained on suburban data (different urbanicity) has
0.006 AUC value more (0.663 vs 0.657) than the one trained on ur-
ban data (same urbanicity). The better transferability of the model
trained with suburban data to urban data could be due to the higher
diversity within suburban data (from three different schools) as
compared to urban data (from a single school). The three suburban
schools may also vary in terms of the teacher practices and use
of the system. The best performing model for the suburban data
is the one trained on the combined dataset (urban+suburban). By
contrast, the best performing model on the urban data is the one
trained on the suburban dataset. We see that the models trained
on the full data transfer well between urbanicities for testing on
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Table 1: Baseline test performances (measured by mean AUC across 100 random splits) for the six train-test setups of the
logistic regression model with full data (without AL) and AL training without warm start. We report the performance of the
AL algorithms without a warm start for L-MMSE, US, and random at the last iteration of AL training for.

Exp# Training Set Test Set Full data model (without
AL)

AL Without Warm Start
L-MMSE UncS Random

Testing on Suburban Students
1 Suburban Suburban 0.628 0.617 0.607 0.578
2 Urban Suburban 0.583 0.548 0.581 0.585
3 Urban + Suburban Suburban 0.652 0.649 0.631 0.599
Testing on Urban Students
4 Urban Urban 0.657 0.617 0.645 0.652
5 Suburban Urban 0.663 0.583 0.582 0.607
6 Urban + Suburban Urban 0.638 0.626 0.639 0.638

Figure 1: Comparing cross-validated performances of the L-MMSE,US, and randomALalgorithms trained on different training
sets without warm start and tested on suburban data.

urban students. The models tested on urban data have similar per-
formances with a 0.025 difference in AUC value between the best
(0.663) and worst-performing (0.638) models. The AUC value differ-
ence between the best (0.583) and worst-performing (0.652) models
is higher for the suburban test data at 0.069.

AL Without Warm Start. The AL models have a relatively larger
difference in performances across the six train-test setups. The
urbanicity mismatch in training and testing sets hurts test perfor-
mance in all the three approaches. A model trained using the data
from a single urbanicity does not transfer well when tested on
the other urbanicity. For testing with suburban data (Table 1, exp#
1-3), training with combined data leads to a better performance
for all three approaches. This observation is consistent with the
pattern in the models trained on the full data without AL. The best
performing AL model (L-MMSE) has only 0.003 less AUC than the
best model trained on full data without AL (0.649 vs 0.652). Note
that random sampling does slightly better than the full data model
when a model trained using urban data is used with a suburban
test set (0.585 vs 0.583). One possible explanation is that random
sampling learns from a smaller subset (50 samples) of training data
from a mismatched urbanicity as compared to the model trained on
the full urban data without AL (744 samples) – potentially reducing
its generalizability to suburban students.

For testing with urban data (Table 1, exp# 4-6), a similar pattern
of better performance with combined data is seen only for L-MMSE.
For UncS and random, the best performing model is the one trained

on urban data (same urbanicity). In contrast to the full data model
without AL, the model trained on suburban data leads to a worse
performance in urban data for all the three approaches. Among the
three approaches, random sampling has the best performance at
an AUC of 0.652 which is only 0.011 less than the full data model
without AL.

4.3 Within-Urbanicity warm start (Experiment
Set #1)

In this set of experiments, we warm start the AL training process
with data based on schools from the same urbanicity as the test
school. We train and test AL algorithms on a single school but take
the initial batch data from other schools in the same urbanicity.
Since our data is from one urban school and three suburban schools,
we will run these experiments only with the suburban data. Also,
we have 1598 observations from one suburban school and only 103
and 68 observations from the other two suburban schools, which
is not sufficient to have diverse enough random splits between
training and test sets across the 100 runs of AL training – leading to
unreliable evaluation. Hence, wewill be running the ALmodels only
on the school with 1598 observations with initial batches drawn
from the other two schools. For comparison, we also report results
for the experiments where the initial batch is drawn from the same
school (no warm start) for the same test sets. Since the total number
of students in the smallest suburban school is 68, we limit the initial
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Figure 2: Comparing cross-validated performances of the L-MMSE,US, and randomALalgorithms trained on different training
sets without warm start and tested on urban data.

batch size to 68 across all experiments for consistency. In cases
where the school has more than 68 samples, we randomly sample
68 observations for the initial batch. These experiments represent
the scenario where we choose to use the past data collected in a
different school(s) from the same urbanicity to warm start the AL
training. We run these experiments to answer our first research
question on the effectiveness of using past data as an initial batch
to warm start the AL training. The results should help us decide if
we want to use past data from a similar student population (schools
in the same urbanicity) to warm start the AL training process.

The three plots in Figure 3 present the results for the three ap-
proaches after a within-urbanicity warm start for a single suburban
school (described in Section 4.3). Each plot has one line for the same
school warm start (blue circles - School A), two lines for warm start
with two other suburban schools (orange squares - School B and red
triangles- School C), and one line for warm start with the combined
data from the two other suburban schools (green pluses - Schools
A&C). As one would expect, the same school warm start (blue cir-
cles) generally has a better performance for all the three approaches
- close to the full data model without AL for suburban data (Table
1, exp# 1). The AL training starts at a high AUC value, potentially
because the initial batch data (with 68 data samples) are all from
the same school. The AUC doesn’t improve with training and stays
the same throughout (almost a straight line at AUC value around
0.62). This is not surprising as the AL algorithms are expected to do
well with less data and we had enough data points from the same
population in the initial batch to start with.

Despite the other two schools (B and C) being in the same urban-
icity (suburban) as school A, using the data from these two schools
to warm start AL training in school A leads to strikingly different
results. The initial batch from one of the two schools (School B;
orange squares) leads to a model performance that is consistently
better than the other school (School C; red triangles) for all the three
approaches. For the UncS approach to AL, warm start with school
B quickly improves the AUC value and surpasses the same-school
warm start with only 5 additional training samples from the target
school. With random sampling, the AUC improvement is relatively
slower as compared to the UncS approach. Nevertheless, the steady
improvement eventually converges with the same-school warm
start at the end of AL training with only 50 samples from school A
as compared to 118 samples from school A for same-school warm

start (68 in the initial batch + 50 during AL training). With L-MMSE,
however, the improvement to AUC value saturates after 5 additional
samples from school A, starts to dip slowly with more samples lead-
ing to a close to chance AUC value (∼0.50) at the end of AL training.
This raises concerns on using past data from a different school to
warm start L-MMSE model training, even when the school is from
the same urbanicity.

The data from the other school (school C; red triangles) in the
initial batch brings down the model performance severely (down
by 0.30 AUC). In all the three approaches, the AUC value at the
end of the training is below chance (<0.50), making the trained
model inapplicable to the target population. The performance grad-
ually improves as the AL training progresses for UncS and random
sampling but fails to recover for L-MMSE. This observation raises
questions on the robustness of the AL algorithms to out-of-context
data during training - how quickly can L-MMSE recover when the
new samples from the target population are introduced?

As one would expect, the initial batch with the combined data
(green pluses) from the two other schools leads to a close-to-average
performance compared to the two schools separately. With more
observations, the combined data initial batch starts to improve
steadily for the UncS and random (not for L-MMSE), and reaches
a similar performance as the same-school warm start. The final
performance for the UncS and random sampling is better than the
ALwithout a warm start and is similar to the full datamodel without
AL for suburban data (Table 1, exp# 1). Thus, there is some evidence
supporting the use of combined data from multiple schools in the
same urbanicity to warm start the AL training.

In summary, the within urbanicity warm start experiments sug-
gest that not all schools in the same urbanicity have a similar effect
when used to warm start the AL training process. Using a random
sample from the combined data could be a better choice. More re-
search on the similarities and differences between the three schools
on other demographic variables is needed to better understand the
warm start process’s differing implications. The UncS approach to
AL and random sampling are seen to be more robust than L-MMSE
in improving the model performance when new data from the tar-
get population is introduced. Overall, we recommend using past
data from the same urbanicity, preferably from multiple schools, in
warm starting some data collection approaches (UncS and random
sampling, not L-MMSE).
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Figure 3: Comparing cross-validated performances of the L-MMSE, US, and randomAL algorithms on a single suburban school
(School A) with warm start data from the same and other suburban schools. In parenthesis in the legend are the initial batch
sizes. WS =Warm Start.

Figure 4: Comparing cross-validated performances of the L-MMSE, US, and random AL algorithms on suburban student data
with no warm start, warm start with past urban student data, and warm start with past suburban student data. In parenthesis
in the legend are the initial batch sizes. WS =Warm Start.

4.4 Between-urbanicity warm start
(Experiment Set #2)

Our next set of experiments are similar to the experiment set #1,
except the initial batch comes from schools in a different urbanicity.
Specifically, we train and test AL algorithms on student data from
urban schools but draw the initial batch from suburban schools.
Likewise, we run the experiment with training and test sets drawn
from suburban data and initial batch from urban data. In these
experiments, we take all the past data of the chosen urbanicity in
the initial batch (the size is varied in the next subsection). These
experiments correspond to the scenario where we choose to use the
past data collected in schools from a different urbanicity to warm
start the AL training. For comparison, we also report results for the
within urbanicity warm start for the same test sets. We run these
experiments to answer our second research question on the impact
of urbanicity in using past data to warm start the AL training. The
results should help us decide if we want to use past data from a
different student population (in this case urbanicity) to warm start
the AL training process.

The results for the between-urbanicity warm start is presented
for two cases - a) test on suburban data (Figure 4), and b) test on
urban data (Figure 5). In the case of the test on suburban data (Figure
4), using past data from urban schools to warm start the AL training
(blue circles) leads to a better model performance when compared

to the model trained with no warm start (orange squares). This
observation is true for all three approaches. In fact, all the three
approaches start at an AUC greater than 0.58 (above the chance
value) with an initial batch drawn from the past urban data. This
is in contrast with like the last set of experiments where using
past data from a different suburban school led to a performance
below chance. The use of past data from urban schools gives a head-
start of close to 0.02 AUC for the AL training with suburban data.
Although the L-MMSE model without a warm start catches up after
20 new observations, the improvement in AUC saturates and stays
at around 0.62, while the training with a warm start climbs up to
0.64. For UncS and random sampling, the progress in performance
for both with and without a warm start is more gradual. Relative to
the US, the gap widens further for random sampling as the training
progresses and reaches 0.04 (0.58 without warm start vs. 0.62 with
a warm start). As expected, a warm start using 500 samples from
the same urbanicity (red triangles) leads to a peak performance
right from the beginning of the AL training and shows little effect
due to the new observations. This is not surprising because the AL
algorithms are expected to dowell with less data andwe had enough
data points (500) from the same population in the initial batch to
start with. Unlike AL without a warm start, the between-urbanicity
warm start catches up to this peak performance in all the three
approaches - even exceeding it in the case of L-MMSE. L-MMSE
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Figure 5: Comparing cross-validated performances of the L-MMSE, US, and random algorithms on urban student data with no
warm start, warm start with past suburban student data, and warm start with past urban student data. In parenthesis in the
legend are the initial batch sizes. WS =Warm Start.

with between-urbanicity warm start also manages to come close to
the full data model without AL for suburban data, while random
sampling only exceeds the AL without a warm start (Table 1, exp#
3). Overall, there is some evidence that using past data from urban
schools effectively warm starts AL training in suburban schools.

The results are not as clear when testing on urban data (Figure
5). In comparison to AL training without a warm start (orange
squares), the AL training with suburban data in the initial batch
(blue circles) performs better for L-MMSE and not for the UncS
and random sampling. In all the three cases, the AL training starts
at a higher AUC value (0.625 vs 0.605) with the suburban data in
the initial batch but remains constant as new data samples are
introduced. One possible explanation is that the initial batch data
from a different urbanicity (suburban) outnumbers the additional
samples from the new population (urban) and the model fails to
improve its predictive power on the target population. After around
12 new samples, the model without a warm start exceeds the warm
start model in its performance. However, as the training progresses,
the L-MMSE performance for no warm start starts to decline, while
the performance of UncS and random sampling rises steadily. Both
UncS and random sampling models without a warm start exceed
the full data model without AL (Table 1, exp# 6). In contrast, the
performance of all the three models with between-urbanicity warm
start doesn’t meet both the baselines (AL without warm start and
full data model without AL). Within-urbanicity warm start with
urban data consistently leads to peak performance in all three
models (red triangles). Overall, there is some evidence that using
past data from suburban schools could be detrimental in warm
starting AL training in urban schools.

4.5 Vary the initial batch size for the warm
start (Experiment set #3)

In the experiment set #2, we took all the data from a chosen urban-
icity as the initial batch. In this experiment set, we try to answer
our third research question on how much past data from different
urbanicity is appropriate to warm start the AL algorithms. We re-
peat the same experiments as before, varying the initial batch size
stepwise. These experiments represent the scenario where we may
have a large amount of past data from a different urbanicity and
need to find out how much data should be used to warm start the

AL training process. The results should help us decide what amount
of past data from the same or different student population (in this
case urbanicity) is effective to warm start the AL training process.

5 DISCUSSION
AL is a promising subfield of ML that can be used in LA to increase
the efficiency of the label collection process that is time-consuming
and requires extensive human effort in many cases. Model training
and label data collection go hand-in-hand in AL, with the model
iteratively choosing the most informative next data point to get
labeled by a human. One of the challenges in the adoption of AL
for education data is the cold-start problem when it is hard to ac-
curately estimate the informativeness of a data point due to the
lack of data at the early stages of the AL process [31]. In this paper,
we have explored the use of past data to overcome the cold-start
problem seen for AL methods, along with the potential implications
of differing student populations in the past data. Using an existing
student affect dataset collected through human observations in mid-
dle school mathematics classrooms, we experimentally tested three
training approaches (UncS, L-MMSE, Random) for the sensor-free
detector of engaged concentration, studying performance within
and across urbanicities (urban, suburban).

5.1 Summary of results
We conducted four sets of experiments to answer our research ques-
tions: how effective is AL i) without warm start, ii) using within-
urbanicity warm start, iii) using between-urbanicity warm start,
and iv) using varying batch sizes to warm start. Our results suggest
the following. First, for all three approaches, training a model com-
pletely using data from a different urbanicity without warm start
results in low detection accuracy in the target population [cf. 22].
Second, not all schools in the same urbanicity have a similar effect
when used to warm start the AL training process. Using a random
sample from the combined data (across suburban schools) could
be a better choice when data from multiple schools are available.
Third, using past data from urban schools effectively warm starts
AL training in suburban schools. In contrast, using past data from
suburban schools is detrimental to warm starting AL training in
urban schools. One possible explanation is that the size of the sub-
urban data is too large (1772 observations) compared to the urban
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Figure 6: Comparing cross-validated performances of the L-MMSE, US, and random AL algorithms on suburban student data
with varying amounts of past urban student data for the warm start. In parenthesis in the legend are the varying initial batch
sizes. WS =Warm Start.

data (755 observations); a trained model on suburban data may
overfit to suburban students and loses generalizability to a different
student population. Lastly, using the right (often small) amount
of past data can effectively warm start AL training if urbanicities
do not match. When comparing the three approaches, we found
that UncS and random sampling are more robust than L-MMSE in
improving the model performance when new data from the tar-
get population is introduced during within-urbanicity warm start.
With between-urbanicity warm start using a smaller batch size, it
could help to switch from AL algorithms to random sampling after
collecting some data points in the target population. In summary,
with the experiments in this paper, we have shown that using past
data to warm start some AL methods could be effective in training a
good quality detector of engaged concentration (performance com-
parable to a detector trained using all data) with a fewer number of
samples in some conditions and not so effective in others.

5.2 Implications for research
Our primary contribution to AL research with education data is the
critical analysis of the use of past data to overcome the cold start
problem of AL training with complex constructs. More importantly,
we show that mismatches in the urbanicity of the past data (and
possibly other demographic dimensions) could be detrimental to
effective model training in some cases. As our AL modeling effort
advances and finds innovative ways to improve model training
with little data, it becomes essential to critically examine which
data samples we are using. The need to consider human diversity
in predictive modeling is becoming more apparent in LA research
as the community moves to implement analytics solutions at a
larger scale. If we aim to serve all students, we need to ensure the
population validity of themodels we build. This does not necessarily
imply that all models must be within-population (and, indeed, we
do not entirely know what a population is [cf. 20]) – our findings
suggest that there are better and worse ways to use data from other
populations when building a model.

5.3 Implications for practice
Yang and colleagues [31] discuss the implications for data collection
procedures when using AL in real classrooms. They present a brief
design of a three-component system – i) an interface to record

human observations, ii) a training paradigm to build a detector, and
iii) an active learning method that connects the labeling and model
training processes (see [31] for more details). In addition, there
should be a provision for the expert coders to ignore the suggestion
made by AL and use their intuition to pick the most informative
cases when necessary. This agency could be important, especially
if the AL-based model is picking up some unknown biases and
leading to a suboptimal model training. Differences between AL
recommendations and expert choices could also be valuable in con-
ducting a post-hoc analysis of an AL approach’s functioning. Also,
even within a single class, there could be student subgroups that
may end being under-observed by the AL recommendation. It is im-
portant that we need to set up conditions in AL recommendation to
pick samples that are representative of these subgroups. Partnering
with teachers will be a useful direction for identifying important
subgroups in a specific class or school. Such research-practice part-
nership can help mitigate potential biases in data selection.

Although this work focuses on classroom observations, we could
extend it to other forms of label data collection such as self-reports,
video coding, and text replay coding.With COVID-19 related school
closures, we are currently exploring the use of AL in collecting
labels through student self-reports. Since a student can be surveyed
at any point in time, the observation window is not as strict as field
observations. However, we must budget the surveys per student
to not interfere with their learning or be too intrusive. Hence, our
focus in using AL shifts from choosing which student to observe,
to when and how often we survey each student. The data is likely
to look different from classroom observations. It could have more
missing data (e.g., student skips the survey) or be more noisy data
(e.g., student responds incorrectly). In addition, the feature set for
the AL algorithm will likely come from a longer time window when
compared to being restricted to a single class period. Our next step
is to collect some self-report data and conduct a similar analysis on
warm starting AL training for the different student populations.

5.4 Limitations and future work
There are some limitations to our work presented in this paper. First,
our experimental design does not consider the temporal nature of
affect data collection in the real world. We choose the next most
informative data point among all available data points in hindsight
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after they are already collected, while in the actual observation
session, only a subset of these students and only the temporally
close data samples will be available for human observation. Second,
we have only experimented with the detector for engaged concen-
tration, which is the most common affective state in our dataset.
This work needs to be replicated with other important but rela-
tively rarer affective states like boredom, frustration, and confusion.
Third, due to data quality issues, we could not include rural schools
in this study. In general, further thought on categorizing urbanicity
is warranted. Fourth, our mixed results on within-urbanicity warm
start suggest that more research is need on the similarities and
differences between the suburban schools on other demographic
variables. Finally, we hope to explore more advanced AL methods
to see if there are methods that respond better to the warm start
condition than UncS and L-MMSE.
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