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ABSTRACT
Numerous studies aim to enhance learning in digital environments
through emotionally-sensitive interventions. TheD’Mello andGraesser
(2012) model of affect dynamics hypothesizes that when a learner
encounters confusion, the degree to which it is prolonged (and
transitions into frustration) or resolved, significantly affects their
learning outcomes in digital environments. However, studies yield
inconclusive results regarding relations between confusion, frus-
tration, and learning. More research is needed to explore how con-
fusion and frustration manifest during learning and its relation
to outcomes. We go beyond past work looking at the rate, dura-
tion, and transitions of confusion and frustration by treating these
affective states as non-linear dynamical systems consisting of ex-
pressive and behavioral components. We examined the frequency
and recurrence of facial expressions associated with basic emotions
(as automatically labeled by AffDex, a standard tool for analyzing
emotions with video data) during confused and frustrated states (as
automatically labeled with BROMP-based detectors applied to stu-
dents’ interaction data). We compare these co-occurring patterns to
learning outcomes (pre-tests, post-tests, and learning gains) within
a digital learning environment, Betty’s Brain. Results showed that
the frequency and recurrence rate of basic emotions expressed dur-
ing confusion and frustration are complex and remain incompletely
understood. Specifically, we show that confusion and frustration
have different relationships with learning outcomes, depending on
which basic emotion expressions they co-occur with. Implications
of this study open avenues for better understanding these emotions
as complex and non-linear dynamical systems, in the long-term en-
abling personalized feedback and emotional support within digital
learning environments that enhance learning outcomes.
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1 INTRODUCTION
Emotions are not mere byproducts of learning; they are integral
components of the learning process affected by a learner’s knowl-
edge and goals [40]. Numerous studies aim to create emotionally
sensitive interventions to improve engagement and learning out-
comes in digital learning environments [23]. The D’Mello and
Graesser [18] model of affect dynamics is a popular contempo-
rary framework for studying emotions with digital learning envi-
ronments. This cognitive model is centered around the notion of
cognitive disequilibrium [51], a state of uncertainty when a learner
is confronted with an obstacle in assimilating knowledge into their
schema. The degree to which cognitive disequilibrium is restored
determines whether an affective state is advantageous or detrimen-
tal to learning processes.

In this model, confusion emerges when cognitive disequilibrium
is initially experienced. Restoring cognitive equilibrium requires
problem solving and reasoning to resolve the impasse in under-
standing and is hypothesized to benefit learning [19]. However,
prolonged confusion and cognitive disequilibrium can transition to
frustration, which is theorized to be harmful to information process-
ing and learning [18]. Many studies have utilized diverse methods
to investigate the role of emotions on learning with digital learning
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environments, including leveraging physiological sensors [26], con-
current self-report instruments [12], retrospective interviews [19],
emote-aloud protocols [16], behaviors [14], and observations [31].

However, the empirical landscape surrounding the interplay be-
tween confusion, frustration, and their influence on the process of
learning remains inconclusive [35, 38]. A systematic review of 39
studies [30] revealed that the transition from confusion to frustra-
tion, a key assumption of D’Mello and Graesser [18], was a rare
occurrence during learning with digital learning environments.
Moreover, the findings emphasized that there is no clear consensus
regarding the role of confusion and frustration and their subsequent
impact on information processing and learning [30].

For instance, [12] found that learners who frequently reported
experiencing confusion and/or frustration during a learning task
tended to have poorer learning outcomes. This finding suggests a
negative relationship between the frequency of confusion and/or
frustration and learning outcomes. Yet, when delving further into
the temporal dimension of this relationship, another study [11]
found that prolonged confused and frustrated facial expressions
were positively (and moderately) associated with the time learners
engaged in information processing. This result suggests that, at
times, confusion and frustration may enhance cognitive process-
ing. Conversely, [4] found no discernible relationship between the
transition from prolonged confusion to frustration and its impact
on outcomes (pre, post, learning gains), while [38] found positive
relationships for both transitions from confusion to frustration and
frustration to confusion with learning outcomes.

In sum, most studies fail to yield supporting evidence for the hy-
pothesized relationships between confusion, frustration, and learn-
ing [30]. The inconclusive results may stem from a variety of factors,
including theoretical, methodological, and analytical challenges.
First, many approaches hypothesize that confusion and frustration
can be simplified into distinct emotion categories [30]. Yet, emo-
tions in general may not be distinct states with clear boundaries [7].
An emotion is a multi-faceted system that comprises affective pro-
cesses emerging from multiple, interacting subsystems involving
psychophysiological, subjective, behavioral, facially expressive, and
neurological components [55].

Second, there are many approaches to defining confusion and
frustration [32] and a variety of methods to measure it (e.g., auto-
mated detection of combined facial action units to classify emo-
tions [11], classroom observations [31], or interaction-based log
detection [53]. Finally, a common technique for modeling relations
between confusion, frustration, and learning is through using mech-
anistic, reductionist methods that decompose a whole into the sum
of its parts, often losing information on the dynamic, multi-level
affective processes [4, 11, 12]. Yet, many real-world multi-faceted
systems exhibit nonlinear dependencies. These systems have bene-
fited from different types of statistical analyses than are typically
used in the learning analytics (LA) community to study patterns of
epistemic emotions.

Thus, we argue that studying confusion and frustration as a
multi-faceted, non-linear dynamical system (NLDS) (NLDS) could
be more comprehensively understood by using multiple sources
of data that capture underlying affective processes that co-occur
during periods of confusion and frustration during learning with
digital learning environments. This novel approach is aligned with

the notion that emotions comprise multiple subsystems [55] and
seeks to answer two research questions:

• RQ1: What is the frequency and recurrence rate of basic
emotions (as detected automatically using facial recognition
tracking [43]) during confusion and frustration (as detected
using established, interaction-based detectors built using
BROMP labels of confusion and frustration [29]), and do
they align with the theorized relationships between basic
and epistemic emotions that can be found in the literature?

• RQ2: Are learning outcomes associated with the frequency
and recurrence rate of basic emotions during confusion and
frustration? We investigate these questions within the con-
text of a digital learning environment called Betty’s Brain [34]
with the goal of developing a more holistic understanding
of emotions regarding their impact on learning with digital
learning environments.

We investigate these questions within the context of a digital
learning environment called Betty’s Brain [34] with the goal of
developing a more holistic understanding of emotions regarding
their impact on learning with digital learning environments.

2 PREVIOUS RESEARCH ON CONFUSION AND
FRUSTRATION DURING LEARNING

Confusion and frustration are commonly described as "epistemic"
emotions because they deal with knowledge-related properties [40].
In this way, both are linked by cognitive and affective processes [50],
but there can be notable differences. Confusion signifies that a
learner is grappling to understand new and challenging concepts.
Thus, it arises based on a learner’s appraisal of feeling uncertain,
which may include varying degrees of novelty, complexity, conflict,
and unfamiliarity, with low comprehensibility of the materials [8,
22, 56]. However, variation within this category has been noted
in the literature, including "productive" and "unproductive" types
of confusion, which may be defined by the learner’s threshold
of tolerance for this emotion and their ability to regulate it [36].
According to Lodge et al. [39], confusion exists on a spectrum
and its impact on learning changes depending on factors related
to task difficulty, prior knowledge, emotion regulation, and the
feedback/support available.

On the other hand, frustration is theorized to emerge when a
learner’s motivation or goal pursuit is blocked, sometimes follow-
ing a state of "hopeless confusion" [18]. A learner might reach a
state of hopeless confusion when they repeatedly cannot resolve
the impasse and important learning goals remain blocked with no
available plan or strategy to move forward. Thus, frustration differs
from confusion because it involves a feeling of being "stuck" or
a conflict of motives [10]. However, Amsel [3] argues that not all
frustration is the same. Some frustration can boost a learner’s mo-
tivation and direct their attention, while other forms can suppress
learning. The dominance of one effect over another hinges on the
individual learner’s anticipatory goal response, degree of agency
in moving forward, and how they approach conflict (e.g., avoid
conflicts due to fear of failure) [10].

The anticipatory goal response is influenced by early theories in
animal learning literature, more commonly known as reward sched-
ules. In other words, the anticipation a learner has for achieving a
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goal stems from their prior experiences of successes (rewards) or
failures (non-rewards) specific to the learning context [3]. Primary
frustration, also known as frustration drive, is a temporary state
that arises when a learner encounters a situation where they ex-
pected a reward (e.g., making progress toward a learning goal), but
the reward is not received promptly, is delayed, or reduced [2]. This
type of frustration is hypothesized to have motivational and ener-
gizing effects on learning. When learners experience at least some
intermittent or inconsistent rewards during the learning process,
they tend to persist despite obstacles and frustration. In contrast, if
primary frustration remains unresolved, it may lead to conditioned
frustration.

Conditioned frustration is a learned response that occurs when
a learner anticipates frustration based on prior experiences in spe-
cific learning situations. This anticipated or conditioned frustration
can have an adverse impact on motivation and engagement that
may inhibit learning and memory [27]. Conditioned frustration is
believed to increase as a function of repeated failures, which is fun-
damentally linked to the "frustration-aggression hypothesis" [17].
The frustration-aggression hypothesis underscores the aggressive
tendencies of conditioned frustration. However, few studies in edu-
cational research have investigated whether variation in the type
of frustration impacts learning differently with digital learning
environments.

Historically, research in affective computing within education
has often overlooked variability in how confusion or frustration
experienced by learners manifests with digital learning environ-
ments, beyond considering their frequency, sequence, and dura-
tion [4, 11, 12, 30]. To advance the quantification of various forms
of confusion and frustration, it may be essential to gather data that
capture the affective processes underlying multiple subsystems
that make up an episode of confusion or frustration during learn-
ing with digital learning environments. Specifically, data channels
that capture components corresponding to the psychophysiological,
neurological, expressive (e.g., facial expressions), behavioral, and
subjective feelings subsystems of confusion and frustration [55]
may offer a more comprehensive measure of how confusion and
frustration manifest during learning with digital learning environ-
ments.

2.1 Facial Expressions and Affective Behaviors
Recent years within the LA community have witnessed a surge
of educational studies utilizing facial expression analysis via fa-
cial recognition tracking systems. The most common method in-
volves classifying what have been called “basic emotions” [20] in a
moment-by-moment fashion during learning activities with digital
learning environments: anger, disgust, enjoyment, surprise, fear,
and sadness. These basic emotions are detected based on specific
facial expressive configurations [20].

To facilitate facial expression analysis, researchers rely on algo-
rithms built from the Facial Action Coding System (FACS), which is
an anatomy-based coding system enabling human coders to assess
basic emotions using 46 observable facial action units (FAUs) that
correspond to facial expressions of emotions [20]. This method has
been used to classify epistemic emotions [11]; however, there is
much debate about whether facial expression configurations cleanly

map onto epistemic emotions [21], which are influenced by cultural
and individual differences [54].

Notably, [47] found a substantial overlap between the facial
expressions tied to basic emotions and the behaviors associated
with epistemic emotions, including confusion and frustration. This
overlap was substantial enough to make it possible to adapt a ba-
sic emotion FAU detector through machine learning to effectively
identify epistemic emotions. For example, a combination of ele-
vated likelihoods of anger and disgust being present (according
to FAU detectors), coupled with a high likelihood of sadness or
low contempt, successfully predicted confusion (according to the
interaction-based detectors built using BROMP), while frustration
was predicted by either a high likelihood of disgust presence paired
with low fear, or low disgust, the potential presence of sadness, and
low contempt.

These findings challenge traditional definitions that draw clear
distinctions between the two epistemic emotions in question—namely
that confused behaviors are typically associated with facial expres-
sions of disgust and anger, while frustration behaviors are more
likely to be associated with disgust and fear [3, 17]. Thus, the objec-
tive of this paper is to further investigate the findings from [47] by
examining confusion and frustration as multi-faceted, dynamical
systems. Specifically, we apply a non-linear dynamical systems
technique called recurrence quantification analysis [59] to explore
the degree to which facial expressions of basic emotions co-occur
during confusion and frustration (measured via interaction-based
detectors built using BROMP [29]). We examined the frequency
and recurrence of facial expressions of basic emotions that co-occur
during confusion and frustration and their association to learning
outcomes with Betty’s Brain.

2.2 Recurrence Quantification Analysis:
Auto-Recurrence Quantification (aRQA) &
Multidimensional Recurrence
Quantification (MdRQA)

Recurrence quantification analysis (RQA) is a method for study-
ing nonlinear dynamical systems (NLDS). Even when applied to
categorical time series data, RQA is versatile, as it simplifies the
recurrence matrix into distance comparisons to binary decisions
(1=recurrence; 0=non-recurrence), and it can be used to analyze
time series with at least 20 data points [59]. Within the LA com-
munity, it has been used to study text comprehension [37] and
eye-gaze dynamics during collaborative learning [45].

Generically, RQA identifies instances when a system revisits a
state it has encountered before, taking into account historical pat-
terns by assessing the similarity between time-series data points
using a recurrence plot, which builds a recurrence matrix using a
phase-space trajectory analysis [41]. Within a phase space, every
parameter of the system is represented as an axis of a multidi-
mensional space, and recurrence is defined by a threshold—often
referred to as the radius—that measures the "closeness" between
elements within a time series. The radius defines the window in
which recurrence is computed along the phase space trajectory. Fig-
ure 1 shows four different recurrence plots, which plot individual
time series points against one another, allowing for comparisons
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along the x and y axes to identify the temporal structure of the time
series.

In this study, we employed two RQA methods: auto-recurrence
quantification (aRQA), which assesses whether repetitive patterns
exist within a single time series by comparing it to itself, and multi-
dimensional recurrence quantification (MdRQA), which extends
recurrence analysis to involve multiple time series [58]. In other
words, aRQA is a technique used to measure the presence of self-
similar (recurring) patterns within a single (unidimensional) time
series (e.g., how repetitive a learner interacts with game elements
such as reading research articles during game-based learning [15]),
while MdQRA—as its name suggests—characterizes self-similarity
for more than two time series (e.g., collective patterns of regularity
across team members’ signals of speech rate, body movements, and
team interactions during collaborative problem solving [1]). hile
aRQA is useful for determining the recurrence of a single basic
emotion time series, it requires data aggregation, a limitation that
could destroy information that may be key to understanding the
affective dynamics underlying confusion or frustration. In contrast,
MdRQA provides a more comprehensive analysis that does not
require aggregation of data across the time series.

To define the rate of occurrence (i.e., how often facial expres-
sions of basic emotions co-occurred during confused and frustrated
actions), frequency (FREQ), was used to measure the proportion
times an event occurred; but this metric is simply a count of the
events that happened within the whole time series and does not
account for recurring patterns within slices of a phase-space trajec-
tory. Thus, three common RQA metrics [41] were used to measure
the rate of recurrence patterns over time. First, recurrence rate
(RR), uses a sliding time window (or radius) to divide the time
series, and then calculates the proportion of times a specific event
reoccurs within those windows (shown as black dots in Figure 1)
out of all the events. In simpler terms, a high RR means there are
more repeating points, while a low RR means the pattern is more
irregular. Like RR, determinism (DET) uses the same sliding time
window, but unlike RR, DET calculates the proportion of events that
form diagonal patterns in the recurrence plot (shown as black lines
in Figure 1; this happens when the system is more deterministic
and less stochastic). As such, higher DET values (longer diagonals)
indicate stronger recurring patterns across those windows, while
lower DET means there is more irregularity. Finally, the third met-
ric, diagonal entropy (DENTR), defines the chaos in the system
by looking at how far these points are from the diagonal line, such
that irregular distances from the diagonal pattern equal high en-
tropy [41]. In other words, higher entropy means the system is
more irregular.

For the MdRQAs, the entropy metric was extended to better
define the multidimensional structure of all facial expressions of
basic emotions (six time series) during confused and frustrated
moments. Specifically, vertical entropy (VENTR), in addition to
DENTR, was used to compute all conceivable diagonal and vertical
lines within a recurrence matrix using a frequency distribution 1.
Similar to DENTR, which measures the irregularity of a system

1Shannon entropy quantifies the level of irregularity within a system. When the
distribution of a set of observations is evenly spread out, Shannon entropy reaches
its maximum value. In contrast, when all observations have the same value, Shannon
entropy is minimized and equals zero.

using diagonal lines, VENTR assesses the degree of irregularity of
the system returning to a specific state using vertical lines [41].

3 METHODS
3.1 Data Collection and Study Design
This study uses the same data as [47], which included 74 sixth-
graders in a classroom at a large, urban public school in the south-
eastern USA. Participants were provided with webcam-equipped
laptops, and the study lasted 7 days. On day one, participants com-
pleted a 30-45 minute paper-based, pre-test content assessment. On
day two, participants engaged in a 30-minute training session to
understand the learning goals and how to utilize the features built
into the Betty’s Brain interface. Over the next four days, partici-
pants were instructed to teach Betty about the causal relationships
involved in the process of climate change using concept maps in
Betty’s Brain software (roughly 50-minute sessions). On the last
day, participants completed a post-test assessment similar to the
content assessment administered at pre-test.

Prior to recruitment and data collection, an ethics review board
approved this study. Assent and informed consent were obtained
prior to data collection, and to maintain the privacy of participants,
only de-identified data were shared following post-hoc processing
procedures. The digital labels generated from the video files using
the facial recognition algorithm built by AffDex [43] were the only
data included in our data analysis (i.e., we did not have access to
raw video showing faces). Due to IRB requirements, demographic
information was not collected on participants; but sixth graders in
this part of the USA are typically 11 to 12 years old. Inclusion in
current analysis required participants to have full data channels for
our variables of interest, with more than 20 data points (require-
ments for conducting RQA) [59] for both basic emotions via facial
expressions and behavioral instances of confused and frustrated
states during learning with Betty’s Brain. Exclusion due to data loss
from movement or technical problems resulted in 5 students being
removed from the confusion analysis, and 33 from the frustration
analysis.

3.2 The Betty’s Brain Learning Environment
Betty’s Brain [34] is an open-ended learning environment [33],
where middle-schoolers learn about complex science topics by
building causal (cause-and-effect) models of scientific processes
(e.g., climate change). Betty’s Brain uses a learning-by-teaching
paradigm, where learners teach a virtual pedagogical agent named
Betty [9]. The system provides learners with resources and tools
to construct and evaluate their causal models. A science book pro-
vides resource pages embedded within the system, while the causal
map interface has a drag-and-drop menu to help learners build the
causal maps they developed to teach Betty and provides a visual
representation of their current causal map, with tools to add, delete,
and modify if needed (Figure 2). In addition, a quiz tool allows
learners to probe Betty’s domain knowledge. The mentor agent in
Betty’s Brain, Mr. Davis, administers and grades the quizzes, pro-
viding strategic feedback when needed via adaptive conversational
scaffolds [46].
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Figure 1: Different recurrence plots are shown to emphasize diverse temporal structures. From left to right, we see 1) uniform
homogeneity (also known as white noise, characterized by the presence of uniformly distributed noise), 2) harmonic periodic-
ity–comprising the overlay of harmonic oscillations, 3) drifting patterns–emerging from a logistic map influenced by a linearly
increasing component, and 4) disrupted sequences–notable in the context of Brownian motion. Each of these are examples
of auto-RQA and are symmetric. Multi-dimensional RQA are between two or more time series and generally not symmetric
(image obtained from [41, 52]).

Figure 2: The “causal map” interface in the Betty’s Brain thermoregulation unit (image from [46]).

3.3 Data Processing, Coding and Scoring
3.3.1 Automated Facial ExpressionDetectors. Videoswere collected
at a sampling rate of 30Hz and processed post hoc using the AffDex
module in iMotions software [28]. AffDex detects facial landmarks
and applies a set of rules built by Affectiva Inc. [44] that is based
on FACs [20]. To classify momentary basic emotions from facial
expressions, AffDex generates time series data for each participant

that provides the log-likelihood values of a human coder rating
a basic emotion as present. A validation study [57] demonstrated
that the AffDex algorithm achieved an acceptable accuracy for pro-
totypical facial expressions in laboratory settings; however, there is
no evidence regarding the validity for facial expressions that occur
in natural settings such as classrooms. The digital labels generated
by the algorithm classify the log likelihood that a human coder
labeled a facial expression, based on an exact configuration of FAUs
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mapped onto facial structures, as present or absent, for six basic
emotions: joy, sadness, anger, fear, disgust, and surprise. The values
produced ranged from negative, 0, and positive; it is important
to note that these values represent the probability of absence or
presence of the basic emotion rather than its intensity. We defined
the presence of six basic emotions: anger, disgust, joy, surprise, fear,
sadness, based on values at or above 1. All negative values were
turned into zeros to indicate that the basic emotion was not labeled
as present by the algorithm.

3.3.2 Interaction-Based Detectors. Confused and frustrated states
were detected using interaction-based detectors [6], which were
developed using BROMP labels. Observers using BROMP collect
quantitative field observations of participants’ epistemic behav-
iors and affect using a momentary time sampling method [49]. In
this study, coding categories included boredom, confusion, delight,
engaged concentration, frustration, and other task-related behav-
iors. These labels are then used to train detectors of these affective
states that can run in real time. For this paper, we used interaction-
based detectors of confusion and frustration that were previously
validated for Betty’s Brain [29, 48].

3.3.3 Data Synchronization. The OBS (video) output was aligned
to the log files by offsetting the time based on the difference be-
tween the OBS time server (EST) and interaction log time server
(UTC). To align the video data with the log-based affect, we pro-
cessed the output of the tracking system at every 20 seconds since
the log-based affect detectors were built to generate the probability
of an emotion every 20 seconds. Thus, when participants indicated
they were either confused or frustrated via log-based detectors at
20-second intervals, we included the likelihood values of the pres-
ence of six basic emotions. Next, we computed the co-occurrence
of each basic emotion separately for 1) confusion or 2) frustration
over the course of learning with Betty’s Brain (Table 1). In addition,
we calculated the recurrence rate of each individual basic emotion
during confused or frustrated states, computing the degree of reap-
pearance of the basic emotion after an initial occurrence during
learning.

3.3.4 Outcomes Measures. Identical pre- and post-tests were used
to define the learner’s domain knowledge, based on the percentage
of correct responses in 7 multiple choice items and 6 open-response
items. Learning gain scores were calculated for each learner using
a normalized change equation [42].

3.4 Data Analysis
For RQ1, we used two RQA methods (aRQA and MdRQA) to inves-
tigate how basic emotions emerged in confusion and frustration.
aRQA was calculated with the ‘crqa’ package [13], using six sep-
arate categorical aRQAs (one for each of the six basic emotions)
for each of the two epistemic emotions (confusion and frustration),
for a total of 12 aRQAs per participant. We set parameters for both
the embedding dimension (the number of dimensions to which
a unidimensional signal was promoted) and the delay (the sam-
pling distance along that unidimensional signal at which successive
embedded dimensions were estimated). To ensure that temporal
structures of small granularity were detected, we set parameters
to low thresholds (delay=1, radius=0.1, and embedding=2), using a

Euclidean distance. This distance of the radius was set to a fixed and
low threshold of 0.1 to ensure that each window captured all states
and any possible recurrences to allow for symmetrical compari-
son [41]. In addition, since the aRQA variables require aggregation,
we averaged the recurrence variables for each basic emotion during
1) confusion and 2) frustration.

MdRQA analyses were conducted by utilizing a function built
by [58]. Two separate MdRQAs were calculated, one for confusion
and another for frustration, using all six time series of facial expres-
sions of basic emotions during learning. The parameters were again
set to a low threshold to detect any granular temporal structures
across the six time series (delay=1, radius=0.1, embedding=2), using
a Euclidean distance. MdRQA does not require aggregation and
thus we did not average the recurrence variables for this analysis.

Finally, for RQ2, a series of Pearson correlations were calculated
to examine associations between the frequency and recurrence vari-
ables of aRQA and MdRQA metrics with learning gain and assess-
ment knowledge scores (pre and post). A Benjamini and Hochberg
posthoc correction was applied to control for false discoveries due
to multiple testing.

4 RESULTS
4.1 RQ1. What is the frequency and recurrence

rate of basic emotions during confusion and
frustration?

Table 1 shows the aRQA analyses of confusion and frustration. No-
tably, both academic emotions show frequent overlap with surprise
(37.07% for confusion, 33.16% for frustration) and with disgust (30%
for confusion and 31.1% for frustration. Other aRQA metrics also
showed high overlap. For confusion, the basic emotion of disgust
showed high recurrence rates (RR=74), sequence patterns (DET=96),
and entropy values (ENT=2.42), which demonstrated that confu-
sions’ co-occurrence with disgust was relatively stable and regular.
For frustration, these numbers were also high (RR=82; DET=98;
ENT=3.26). Similar results were found for confusion and surprise
(RR=70; DET=95.16, ENT=2.53), but frustration’s relationship with
surprise was slightly more irregular and unpredictable (RR=79;
DET=97, ENT=3.27). Other basic emotions co-occurred and recurred
less regularly with confusion and frustration (FREQ>6%; RR>90,
DET>99, ENT≥3.11 for confusion; FREQ>7%; RR>81, DET>97,
ENT≥3 for frustration), though one might note that frequency rates
that hover around 5% (roughly 1 in 20 instances) are not exactly
rare.

4.2 RQ2. Are learning outcomes associated with
the frequency and recurrence rate of basic
emotions during confusion and frustration?

4.2.1 Confusion, Basic Emotions, and Learning Measures. Table 2
shows a series of Pearson correlations between the aRQA metrics
of each basic emotion expressed during a confusion label and stu-
dent learning gains. This analysis revealed a marginally significant,
and moderate, positive association between recurring patterns of
sadness (DET) co-occurring during confusion and learning gains
(𝑟=.27, 𝑝=.04, adjusted 𝛼=.01; Table 2), despite the relatively low
the frequency of sadness co-occurring with confusion (6%); thus,
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Table 1: The frequency and aggregated aRQA metrics for each basic emotion during confusion and frustration.

Confusion (𝑛=69) Frustration (𝑛=41)
FREQ RR DET DENTR FREQ RR DET DENTR

Anger 3.94% 94.28 99.71 3.43 3.01% 94.37 99.73 3.29
Sad 6.07% 92.01 99.46 3.32 5.57% 92.17 99.18 3.38
Disgust 30% 73.8 96.27 2.42 31.1% 81.58 97.79 3.26
Joy 4.06% 81.16 97.22 2.99 2.96% 92.99 99.85 3.11
Surprise 37.07% 70.3 95.16 2.53 33.16% 78.95 96.78 3.27
Fear 6.23% 92.41 99.53 3.37 5.77% 89.46 99.18 3.32

Note. All RQA variables represent averages.

this result indicated that the recurring patterns (DET) of sadness
during confusion were positively associated with learning gains.

No significant relationships were found for post-tests (Table 3),
but Table 4 shows there was also a moderate—though marginally
significant—correlation between the frequency of facial expressions
of sadness during confusion and pre-test scores (𝑟=.22, 𝑝=.07, ad-
justed 𝛼=.01).

Finally, we examine the results of our MdRQA (Table 5), which
examines these patterns with less data loss. This analysis did not
show any significant associations between learning gains, post-,
and pre-test scores with the remaining frequency and recurrence
variables of basic emotions expressed during confusion (𝑝𝑠>.05;
Table 3 & Table 5). Thus, for confusion, only low levels of sadness
(6%) are positively associated with the learner’s prior knowledge
and only with an aRQA analysis.

4.2.2 Frustration, Basic Emotions, and LearningMeasures. The same
aRQA analyses conducted for confusion were also applied to ex-
plore the relationships between frustration’s recurrence with basic
emotions and learning outcomes. As Table 6 shows, Pearson cor-
relations found a marginally significant, and moderate, negative
association between the average DET of disgust during frustra-
tion and learning gains (𝑟=-.33, 𝑝=.04, adjusted 𝛼=.01). In other
words, the longer recurring patterns of disgust during frustration
were associated with lower learning gains. Similarly, there was a
marginally significant, and moderate, positive association between
the average frequency of disgust (31%) during frustration and learn-
ing gains (𝑟=.3, 𝑝=.06, adjusted 𝛼=.01). This indicated that when
disgust co-occurred with frustration, but did not recur over time, it
was positively associated with learning gains.

For post-test scores (Table 7), there were only marginally signifi-
cant results. The average ENT of sadness during frustration was
moderately and negatively correlated with post-test scores (𝑟=-.44,
𝑝=.04, adjusted 𝛼=.01). In other words, the more irregular recurring
patterns of sadness was expressed during frustration was associated
with worse knowledge scores on the post-test assessment.

Correlations with pre-test scores showed both significant and
marginally significant correlations (Table 8). The average DET of
disgusted facial expressions during frustration was significantly,
moderately, and positively correlated with pre-test scores (𝑟=.38,
𝑝=.02, adjusted 𝛼=.03), while the average RR of disgust during frus-
tration showed a marginally significant, and positive correlation
with pre-test scores (𝑟=.28, 𝑝=.08, adjusted 𝛼=.04). In contrast, the

frequency of disgusted facial expressions during frustration was
significantly, moderately, and negatively correlated with pre-test
scores (𝑟=-.46, 𝑝=.002, adjusted 𝛼=.01). This indicated that the more
often disgust was facially expressed during frustration (FREQ), the
less prior knowledge the learner had about the learning domain.
In contrast, the more recurring patterns of disgusted facial expres-
sions during frustrated actions (both RR and DET), the more prior
knowledge the learner had about the domain.

Finally, Table 9 presents the results of our MdRQA analysis of
frustration. As with confusion, this analysis did not yield any sig-
nificant associations between the remaining recurrence metrics of
basic emotions during frustration and outcomes (𝑝𝑠>.05).

5 DISCUSSION
In this study, we investigated confusion and frustration as non-
linear dynamical systems by evaluating the underlying facially
expressive affective processes that co-occur during confusion and
frustration [55]. Specifically, we evaluated the frequency and recur-
rence rate of facial expressions of basic emotions during confusion
and frustration and its relationship with outcomes (learning gain,
post, pre) during learning with Betty’s Brain.

In RQ1, we found that confusion, on average, co-occurred with
facial expressions of disgust and surprise most frequently (roughly
30% and 40% of the time respectively, while it showed less co-
occurrence with the facial expressions of anger, sadness, joy, and
fear (> 5% of the time on average). Other metrics from our aRQA
analysis corresponded with these findings, including the recurrence
rate and length of the recurrence. These findings partially supported
our hypothesis, where the results were aligned with [47] given that
the high frequency of disgusted facial expressions were associated
with confusion. However, our findings showed that confusion cor-
responded with a high frequency of surprised facial expressions,
yet low frequency of angry and sad facial expressions [47]. Notably,
the higher frequency of surprise has sometimes been found to occur
during confusion [56], a finding aligned with how learners might
react to feelings of uncertainty paired with high novelty when an
existing schema was disrupted [51]. It is interesting to also note
that when surprised facial expressions recurred regularly during
confusion, it may indicate a possible lack of effective problem solv-
ing or emotion regulation if the learner was repeatedly surprised
during learning.

Similarly, we found that frustration, on average, co-occurred
with facial expressions of disgust and surprise (roughly 31% and
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Table 2: Learning gains vs aRQA metrics of basic emotions during confusion; significant correlations given in black, bold font.

LEARNING GAINS
Anger Sad Disgust Joy Surprise Fear

𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼

RR .17 .23 .04 .16 .24 .04 -.07 .58 .04 -.01 .94 .05 -.16 .24 .04 -.01 .99 .05
DET .21 .12 .01 .27 .04 .01 -.13 .29 .03 -.06 .63 .01 -.1 .47 .05 -.03 .77 .04
DENTR .09 .53 .05 -.03 .83 .05 .01 .93 .05 .03 .81 .03 -.16 .24 .01 -.05 .54 .03
FREQ -.18 .14 .03 -.16 .19 .03 .13 .28 .01 .03 .79 .04 .11 .38 .03 .19 .12 .01

Note. All aRQA variables represent averages; 𝛼=adjusted alpha.

Table 3: Post-test scores vs aRQA metrics of basic emotions during confusion; significant correlations given in black, bold font.

POST-TEST SCORES
Anger Sad Disgust Joy Surprise Fear

𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼

RR .17 .23 .04 .16 .24 .04 -.07 .58 .04 -.01 .94 .05 -.16 .24 .04 -.01 .99 .05
DET .18 .20 .03 .16 .22 .01 -.14 .26 .01 -.06 .63 .01 .06 .64 .04 -.02 .81 .04
DENTR .27 .15 .01 .02 .88 .05 .04 .75 .0 -.01 .94 .04 -.15 .25 .01 -.07 .44 .03
FREQ -.10 .42 .05 -.02 .84 .04 .08 .54 .04 .02 .99 .05 .06 .62 .03 .13 .30 .01

Note. All aRQA variables represent averages; 𝛼=adjusted alpha.

Table 4: Pre-test scores vs aRQA metrics of basic emotions during confusion; significant correlations given in black, bold font.

PRE-TEST SCORES
Anger Sad Disgust Joy Surprise Fear

𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼

RR -.09 .5 .03 -.18 .19 .03 -.05 .69 .04 -.08 .49 .01 .1 .45 .03 -.05 .56 .03
DET -.06 .69 .05 -.16 .22 .04 -.04 .74 .05 -.05 .65 .04 .15 .25 .01 -.04 .66 .05
DENTR -.07 .62 .04 -.1 .46 .05 .12 .31 .03 .02 .84 .05 .01 .94 .05 .04 .62 .04
FREQ .09 .48 .01 .22 .07 .01 -.13 .28 .01 -.06 .6 .03 -.08 .53 .04 -.11 .38 .01

Note. All aRQA variables represent averages; 𝛼=adjusted alpha.

Table 5: MdRQA metrics of basic emotions during confusion and outcomes; significant correlations given in black, bold font.

LEARNING GAINS POST-TEST SCORES PRE-TEST SCORES
𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼

RR -.02 .85 .05 -.01 .96 .05 -.1 .41 .01
DET -.08 .52 .04 -.01 .91 .04 -.07 .54 .03
DENTR -.1 .41 .01 -.12 .34 .03 -.02 .85 .05
VENTR -.08 .51 .03 -.14 .24 .01 -.06 .63 .04

Note. 𝛼=adjusted alpha.

33% of the time respectively), compared to anger, joy, sadness, and
fear (> 6% of the time). In addition, on average, there was a high
recurrence rate of facial expressions of disgust and surprise during
frustration, with similar regularity compared to the other basic
emotions. In contrast, while the frequency of joy, anger, sadness,
and fear was very low, there were relatively high recurring patterns
during frustration, with slightly more irregularity during learning.

Again, these results partially supported our hypothesis, where we
did not find evidence that there was a high frequency of sadness,
as found by [47]. In addition, we did not find that anger was associ-
ated with frustration, as suggested by the Frustration-aggression
hypothesis [3, 10], which may indicate that learners did not ex-
perience conditioned frustration. Moreover, the findings partially
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Table 6: Learning gains vs aRQA metrics of basic emotions during frustration; significant correlations given in black, bold font.

LEARNING GAINS
Anger Sad Disgust Joy Surprise Fear

𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼

RR -.20 .41 .04 -.23 .29 .03 -.2 .22 .04 -.09 .58 .03 -.24 .38 .01 -.42 .2 .03
DET -.21 .38 .03 -.12 .58 .05 -.33 .04 .01 -.05 .78 .05 -.18 .49 .04 -.35 .28 .04
DENTR .1 .69 .05 -.34 .11 .01 .1 .54 .05 .1 .55 .01 -.1 .71 .05 -.43 .19 .01
FREQ -.22 .17 .01 -.14 .4 .04 .3 .06 .03 .08 .61 .04 .12 .46 .03 .04 .78 .05

Note. All aRQA variables represent averages; 𝛼=adjusted alpha.

Table 7: Post-test scores vs. aRQAmetrics of basic emotions during frustration; significant correlations given in black, bold font.

POST-TEST SCORES
Anger Sad Disgust Joy Surprise Fear

𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼

RR -.08 .75 .05 -.17 .45 .03 -.06 .73 .03 -.03 .86 .04 -.08 .76 .04 -.34 .3 .01
DET -.11 .67 .03 -.07 .74 .04 -.19 .25 .01 .01 .96 .05 -.11 .67 .03 -.24 .48 .04
DENTR .09 .73 .04 -.44 .04 .01 .01 .95 .05 .04 .82 .03 .01 .98 .05 -.28 .4 .03
FREQ -.24 .13 .01 .01 .97 .05 .01 .94 .04 .23 .15 .01 .07 .66 .01 .06 .72 .05

Note. All aRQA variables represent averages; 𝛼=adjusted alpha.

Table 8: Pretest scores vs. aRQA metrics of basic emotions during frustration; significant correlations given in black, bold font.

PRE-TEST SCORES
Anger Sad Disgust Joy Surprise Fear

𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼

RR .02 .99 .05 .06 .78 .03 .28 .08 .04 .14 .42 .03 .26 .34 .04 -.09 .8 .03
DET .21 .39 .03 .04 .84 .04 .38 .02 .03 .08 .64 .04 .00 .1 .01 .02 .96 .05
DENTR -.37 .12 .01 -.01 .96 .05 -.01 .97 .05 .00 .1 .01 .35 .19 .03 .19 .57 .01
FREQ .08 .62 .04 .24 .13 .01 -.46 .002 .01 .06 .70 .05 -.08 .63 .05 .03 .86 .04

Note. All aRQA variables represent averages; 𝛼=adjusted alpha.

Table 9: MdRQA metrics of basic emotions during frustration and outcomes; significant correlations given in black, bold font.

LEARNING GAINS POST-TEST SCORES PRE-TEST SCORES
𝑟 𝑝 𝛼 𝑟 𝑝 𝛼 𝑟 𝑝 𝛼

RR -.1 .55 .03 -.09 .58 .03 .11 .48 .03
DET -.19 .25 .01 -.12 .46 .01 .13 .42 .01
DENTR -.04 .81 .04 .06 .69 .05 .03 .84 .05
VENTR -.02 .92 .05 .08 .6 .04 .04 .82 .04

Note. 𝛼=adjusted alpha.

matched [47], in that there was a high frequency of disgusted, yet
low frequency of fearful facial expressions related to frustration.

A possible explanation for the results could be due to learners’ in-
dividual differences, such as differences in emotion-regulation skills,
prior experiences, intrinsic motivation, problem-solving skills, etc.

In addition, some learners may have suppressed their facial expres-
sions during learning, as other research studies find that adoles-
cents tend to suppress negative emotions as a maladaptive emotion-
regulation strategy during learning [24, 25].

InRQ2, we examined the relationship between facial expressions
of basic emotions during confusion and frustration with outcome
measures (learning gain, pre, post; RQ2). Notably, we found that
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while sadness rarely occurred during confusion, when sadness re-
curred regularly during confusion (DET), it was beneficial to learn-
ing gains. A similar correlation was found between the frequency
of sadness during confusion and pre-test scores. In other words,
learners with low prior knowledge, more frequently facially ex-
pressed sadness during confused actions, and, on average, regularly
recurring patterns of this co-occurrence across the learning task,
was associated with higher learning gains of the material. Thus, a
"productive" type of confusion [39] may involve some degree of
more frequent and regularity recurring (DET) facial expressions of
sadness during confused actions; however, more research is needed.

For frustration, the regularity of recurring patterns (DET) of dis-
gusted facial expressions was associated with lower learning gains,
even though the overall frequency of disgusted facial expressions
during frustration was associated with higher learning gains. In
other words, more bursts of disgust during frustration may ben-
efit learning, but when disgusted facial expressions are regularly
expressed during frustration, it was harmful to learning. Possibly,
what we are seeing is that learners may need more time to recover
from whatever is causing recurring patterns of disgust to emerge
with their frustration, since these results suggest that longer breaks
in between those co-occurrences may have a beneficial impact on
the learning process. In contrast, if disgust and frustration are reg-
ularly co-occurring repeatedly across the learning task without
effective resolution, it may indicate an ineffective problem solving
or emotion regulation strategy that is harmful to information pro-
cessing and learning. Notably, learners tended to score lower on
the post-test assessment, the more irregular their facial expressions
of sadness (DENTR) repeatedly co-occurred with frustration.

Frustration’s relationship with disgust also showed significant
correlations with prior knowledge. Two metrics exploring the emer-
gence of disgust during frustration—both RR and DET—were cor-
related with high prior knowledge, while a third (FREQ) was cor-
related with low prior knowledge. This indicates that regular, re-
curring bouts of disgust during frustration was associated more
prior knowledge, whereas a higher occurrence of disgust during
frustration indicated less prior knowledge. Future research should
examine the degree to which learners’ expectations may be in-
fluencing the regularity and recurrence of affective patterns with
digital learning environments. For example, it is possible learn-
ers with high prior knowledge exhibit stronger emotional control
because they expect to perform better even if disgust sometimes
still emerges during frustration. However, given that frustration’s
relationship with the occurrence of disgust was also associated
with higher learning gains, we might not necessarily think that
suppressing the emergence of disgust is all that important. Instead,
given that regularly recurring patterns of disgust during frustration
was associated with less learning, looking to how learners are able
to regulate their emotions during learning may be fruitful direction
forward.

Regardless, this may be indicative of different "types" of frustra-
tion based on their relationship to outcome measures [3].

5.1 Threats to Validity
Demographic data on age, gender, and race were not collected,
which may limit our understanding regarding the diversity of the

population under study. In addition, to align the facial expressions
of basic emotions with the interaction-based detectors for confusion
and frustration required processing the continuous time series logs
into 20 second intervals, based on the initial use of BROMP to
develop the interaction-based detectors. These alignments resulted
in a low number of recurrences for the continuous facial emotions
data (i.e., 30 Hz to 1 second to every 20 seconds), and while these
time series yield sufficient recurrences to calculate reliable values
for the recurrence measures (>20 data points), the result reflects a
weighted average of the continuous dynamics within the 20 second
intervals. Moreover, the confusion and frustration detectors were
far from perfect, with an AUC ROC of .56 and .63 respectively [29,
58]. Thus, it is possible that some confusion and frustration may
not have been accurately detected. It is also important to note
that facial recognition algorithms were originally primarily trained
using data sets of adult, white male faces; thus, this characteristic
of the training data could potentially introduce some measurement
errors in facial expression analysis.

5.2 Future Directions and Implications
Future research should investigate additional data channels that
may collect other affective processes that underlie the subsystems
of an emotion. For example, physiological signals, e.g., heart rate,
may further distinguish between different types of confusion and
frustration. This also requires building multidimensional emotional
labels like "regularly-recurring-disgusted-frustration" to offer a
more nuanced understanding of learners’ affective states.

Moreover, utilizing mixed methods, such as data-driven inter-
views, can uncover valuable qualitative insights into learners’ emo-
tional experiences, shedding light on hidden emotional complex-
ities and cultural influences to complement quantitative emotion
labels [5]. Investigating affective nuances within different cultural
contexts, e.g., Western and Eastern cultures, who may interpret
similar emotional states differently, is vital for recognizing emo-
tional variability and designing culturally sensitive digital learning
environments.

The implications of this research provide a deeper understanding
on the different types of confusion and frustration that learners
face with digital learning environments. The ability to detect and
distinguish between types of confusion and frustration opens op-
portunities for personalized feedback. A better understanding of
affect can lead to better affective support, eventually enabling ed-
ucators to provide targeted guidance to learners based on their
emotional responses, helping them overcome obstacles to improve
their learning outcomes.
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