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ABSTRACT

During middle school, students’ learning experiences begin to in-
fluence their future decisions about college enrollment and career
selection. Prior research indicates that both knowledge gained and
the disengagement and affect experienced during this period are
predictors of these future outcomes. However, this past research
has investigated affect, disengagement, and knowledge in an overall
fashion – looking at the average manifestation of these constructs
across all topics studied across a year of mathematics. It may be
that some mathematics topics are more associated with these out-
comes than others. In this study, we use data from middle school
students interacting with a digital mathematics learning platform,
to analyze the interplay of these features across different topic areas.
Our findings show that mastering Functions is the most important
predictor of both college enrollment and STEM career selection,
while the importance of knowing other topic areas varies across
the two outcomes. Furthermore, while subject knowledge tends
to be the most relevant predictor for general college enrollment,
affective states, especially confusion and engaged concentration,
become more important for predicting STEM career selection.
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1 INTRODUCTION

The decision to attend college, and the selection of a major, often
begins to form in middle school [31]. While factors like economic
status, gender, family background, and other demographics influ-
ence college decisions, class-level experiences play a pivotal role
in determining both whether a student decides to attend college
and future persistence in academic pursuits [28]. These beneficial
outcomes can largely be attributed to key formative experiences
that students undergo. Colleges often emphasize the importance
of engaging in a challenging curriculum in high school, which is
made possible by middle school experiences [31], in order to cul-
tivate effective study habits crucial for college success. Lent et al.
[18] further suggest that student experiences that sharpen essen-
tial skills lead to increased self-confidence, refined interests, and
clearer goal-setting, key steps towards a career decision. Equipped
with this groundwork, students can more confidently navigate their
higher education paths and establish career goals. However, a lack
of such experiences can diminish self-confidence and motivation
for higher education [3].

For the particular case of mathematics, previous studies have
shown that middle school students who challenge themselves with
courses like Algebra I are better positioned to enroll in advanced
courses once they reach high school [31]. Engaging with these
advanced courses often heightens students’ awareness of opportu-
nities in higher education and increases their propensity to apply to
four-year colleges [2]. Among minority and first-generation college
students, those enrolled in advanced math courses demonstrate a
higher likelihood of attending college [15]. Moreover, proficiency in
mathematics has been identified as a reliable predictor of long-term
academic outcomes [4].

Courses and classwork influence students beyond just impart-
ing knowledge and skills; they also shape a student’s interest in
particular topics. Genuine intrinsic interest in math directly influ-
ences both the student’s effort in math class and overall school
attendance, which in turn affects college enrollment opportunities
[4]. Students who do not find their courses engaging or associate
negative self-perceptions and affective states with those courses
are less inclined to pursue further study in that area in college [30].
In contrast, students who develop a passion for specific subjects
are more likely to choose related majors in higher education [13].
Therefore, the specific learning experiences and the related affec-
tive experiences a student has in different domains can guide their
interests and decisions regarding college majors and future careers.

In this context, educational software logs offer a valuable data
source for assessing not only a student’s knowledge but also their
affective states during the learning process. Within STEM edu-
cation, these logs, when paired with observations of trained hu-
man researchers [6], have been instrumental in creating detectors
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for a range of affective states, including engaged concentration,
boredom, frustration, and confusion [16, 23]. Such data has also
been employed to train models to identify disengaged behaviors
such as being off-task and gaming the system (trying to succeed
in the learning system without genuinely understanding the con-
tent [23]). Additionally, log data has been pivotal in developing
models that estimate a student’s knowledge level [10, 27]. Based
on these models and data collected from middle school onwards,
previous studies have explored how knowledge, affective states,
and disengaged behaviors can influence vocational self-efficacy
[23] and longitudinal educational outcomes [1, 9, 25, 26]. Findings
indicate that both acquired knowledge and specific affective states
and disengaged behaviors can predict students’ likelihood of at-
tending college [25], opting for a STEM major [26], and pursuing a
STEM career [1, 9], also showing an association with interest and
vocational self-efficacy in STEM [22]. However, these works have
considered these features in an overall fashion, overlooking the
nuanced differences that learning experiences in specific subjects
can suppose for these outcomes.

Recognizing that not everymajor involves the samemathematics,
even within STEM learning, there is still a need to understand how
knowledge, affective states, and disengaged behaviors in various
topic areas might influence and predict these long-term educational
outcomes. Therefore, in this study, we investigate the association
between students’ knowledge of several mathematical topic ar-
eas and both university enrollment and career selection (STEM vs
non-STEM). Additionally, we explore whether knowledge of these
subjects, along with affective states and disengaged behaviors ex-
perienced in each area, can predict their likelihood of university
enrollment and pursuing a STEM career.

2 LONGITUDINAL OUTCOMES PREDICTION

Previous research has employed ML techniques for predicting lon-
gitudinal outcomes such as college and STEM major enrollment
using knowledge estimates and detectors, derived from students’
interactions with learning platforms, as features. San Pedro et al.
[25] developed a Logistic Regression (LR) model that could accu-
rately identify U.S. students who eventually attended college 68.6%
of the time using knowledge, affective states, and disengaged be-
haviors models based on interaction data from the middle school
math platform ASSISTments [14], along with the number of actions
and correctness as features. Their findings indicated that college
enrollment is positively associated with knowledge, engaged con-
centration, and correctness. On the other hand, boredom and con-
fusion had negative relations with college enrollment (with smaller
odds ratios), though when these affective states were integrated
into the final prediction model, the direction of these two associ-
ations flipped. San Pedro et al. [26] found that the same dataset
and features could also differentiate between students who enrolled
in STEM majors and students who did not enroll in STEM majors
with only slightly worse performance (66%). While the directions
of associations persisted when contrasting STEM and non-STEM
enrollees, many of them individually lost statistical significance.
In fact, their top-performing model only included knowledge and
gaming, which were the only variables that remained significant in
the comparison.

Extending this scope, other research projects have focused on
predicting and analyzing the choice of STEM careers post-college
using data from the same learning system. Almeda & Baker [1], us-
ing a statistical approach rather than ML models, presented similar
results to those related to STEM major enrollment, highlighting
knowledge and disengaged behaviors, especially gaming the sys-
tem, as pivotal predictors, finding the same direction of associations
as observed by [26] for STEM major selection. Similarly, Chiu [9],
employing Logistic Regression, Ordinary Least Square Regression,
and Random Forests, also found that gaming the system is the most
important predictor for STEM career selection. Furthermore, Chiu
[9] explored potential gender disparities in predictions, discovering
that detectors typically perform better for male students than fe-
male ones. Chiu [9] also noted that female students who experience
less boredom and more off-task behaviors were more inclined to-
wards a STEM career. In contrast, male students were more likely to
select a STEM career when they experienced greater concentration
and less frustration.

Other papers have focused on conducting further feature engi-
neering in the same data set tomaximize the performance indicators
of STEM career predictive models. Liu & Tan [19] showed that by
appropriately enriching features, considering statistical measures,
mathematical transformations, and inter-feature interactions, and
adopting a forward-backward strategy for feature selection, the per-
formance of STEM career prediction models can improve by 9.3%.
Makhlouf & Mine [20] found that detectors yielded better results
when the features were aggregated based on the skills students
practiced rather than the problems solved. Their best-performing
model (a decision trees classifier) could distinguish between STEM
and non-STEM careers 68% of the time when leveraging skill-based
and school-aggregated features. This approach used similar fea-
tures to [25, 26] while adding more nuance regarding help requests
and time spent on problems and skills. Similarly, Yeung & Yeung
[32] also assessed several features and models to enhance the per-
formance of STEM career predictions. Their results indicated that
integrating deep knowledge tracing models for each specific skill
as features, rather than treating all knowledge uniformly, improved
model metrics. Their top-performing model (logistic regression)
achieved an AUC of 0.692.

While the relationships between knowledge, affective states, and
disengaged behaviors in STEM education have been extensively
explored for several educational outcomes, there seems to be an
unaddressed gap in understanding the specific impacts of learning
experiences associated with different topic areas. Although previ-
ous work has investigated specific skills, this grain-size is too fine
to produce understanding of which areas of curriculum are most
important to emphasize within interventions targeted at increasing
participation in STEM. Based on the improvements in predictions
shown when the features are aggregated considering the different
skills [20, 32], we hypothesize that the influence of experiences
across distinct topics might vary, potentially identifying certain
areas with a stronger association with successful educational out-
comes. Consequently, this research aims to discern these nuanced
differences. Given previous studies emphasizing the primacy of
knowledge in predicting college and STEM major enrollment, we
begin our exploration by examining the influence of proficiency
in each topic area on these two types of enrollment. Subsequently,
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we integrate affective states and disengaged behaviors (categorized
by topic area) into our analysis to determine if they offer addi-
tional insights that could refine our predictions for both general
and STEM-specific enrollments.

3 METHODS

This section describes the dataset utilized in this study, enumer-
ates skills and topic areas considered, and discusses the models
employed to analyze the potential of each topic area for predicting
college enrollment and participation in a STEM career.

3.1 Data

In this study, we employ an interaction dataset from the ASSIST-
ments learning platform [14], gathered between 2004 and 2007
[24, 25]. This dataset contains 78 variables derived from students’
interactions while completing mathematics problems using AS-
SISTments. Data from 1709 students from 4 middle schools in
the U.S. (Avg=427.25, SD=209.25) was obtained. The dataset in-
cludes measures of students’ affective states and disengaged be-
haviors, specifically boredom, concentration, confusion, frustra-
tion, off-task behavior, carelessness, and gaming the system. These
measures were calculated by observing students in classrooms
[6] and training machine learning models to replicate those judg-
ments from student interactions with the learning system [23].
Validation was conducted to ensure these detectors were appli-
cable across unobserved students from urban, suburban, and ru-
ral populations [21]. The dataset also includes student knowledge
estimates, calculated using Bayesian Knowledge Tracing (BKT;
[9]). Finally, the dataset contains longitudinal outcomes, including
MCAS state standardized examination scores [23], college enroll-
ment [25], and students’ chosen careers (classified as being in STEM
fields or not, according to the NSF guidelines for defining STEM
careers; [24]). Although the MCAS test scores and college enroll-
ment data were available for all students, data on career choice
was only available for 591 students. The dataset is publicly avail-
able at https://sites.google.com/view/assistmentsdatamining/data-
mining-competition-2017.

3.2 Grouping Skills

The dataset includes 3162 unique mathematics problems, catego-
rized by the ASSISTments team into 102 distinct skills correspond-
ing to the evaluated topic or knowledge component. This analysis
excludes problems unrelated to a specific skill or set of skills (only
considering 2210 problems). These skills were then consolidated
into 12 topic areas (Cohen’s Kappa between authors was calculated
for each category to check inter-rater reliability and was above
0.85 for every category). We use these topic areas to investigate the
impact of student proficiency (and affect and behavior) in each area
on the longitudinal outcome. For instance, addition, subtraction,
multiplication, and division were collated under the Basic Opera-
tions topic area. A detailed description and the inter-rater reliability
of each topic area is provided in Table 1.

3.3 Analyses

This study investigates two longitudinal outcomes: college enroll-
ment and STEM career selection. We do not investigate MCAS data,

as our findings might simply reflect what topic areas the state chose
to emphasize in their test design. We investigate the relationship
between student proficiency in each topic area and longitudinal
outcomes by first taking each student’s final BKT estimate for each
skill. Then we average across those final BKT estimates for each
topic area, producing a single average of students’ estimated knowl-
edge at the end of their use of ASSISTments. We then compare those
averages between students achieving the positive longitudinal re-
sult and students not achieving that result. Specifically, we compare
final knowledge for enrolled and non-rolled students and compare
final knowledge for STEM career and non-STEM career students.
In making this calculation, for each topic area, we filter out any
skill that was not encountered by the student and filter out any
student who does not solve at least one problem of any skill in that
topic area. For each topic area, we compute effect sizes using Cliff’s
Delta and conduct a Mann-Whitney U test due to the non-normal
distributions of BKT estimations. We apply the Benjamini-Yekutieli
correction for controlling the false discovery rate, in line with the
original method proposed by [7]. Within this method, only tests
with p-values lower than their corresponding alphas are deemed
statistically significant.

We also assess the degree to which each topic area’s data can
predict each longitudinal outcome, utilizing a range of machine
learning (ML) techniques. Initially, we develop 12 distinct logistic
regression models, each employing a specific single topic area’s
BKT estimate to predict college and STEMmajor enrollments. These
models are tested via a 4-fold (middle) school-level cross-validation
approach and evaluated based on the mean and standard deviation
of the Area Under the Receiver Operating Characteristic Curve
(AUC ROC; AUC for short). Subsequently, we apply forward feature
selection, considering BKT estimates of all topic areas, to identify a
set of topic areas that, combined, lead to the best prediction. The
ML techniques used in the forward feature selection are Logistic
Regression (LR), Random Forests (RF), Support Vector Machines
(SVM), and Multi-Layer Perceptron (MLP). We used the factory
default settings of all ML models given by the SciKit Learn Library.

Finally, we incorporate affective states and behaviors into the
feature forward selection algorithm to examine if supplementary
features could improve predictions for college enrollment and STEM
careers selection. Carelessness estimates are not considered for this
analysis because in the publicly available dataset they were aver-
aged across all the skills of each student and therefore it is not
possible to calculate the specific carelessness for each topic area.
We evaluate the mean decrease impurity (MDI) feature importance
[8] of affective states, behaviors, and knowledge estimates for each
topic area, as selected by the top-performing RF predictive model,
which is also the ML technique with the best results among the
two learning outcomes that we are predicting (See table 6, section
4.3). We selected this feature importance because its calculation
is straightforward based on the splits across the decision trees
[8]. Moreover, MDI reduces the risk of obscuring the relevance of
features that are not uniformly (positively or negatively) associ-
ated with the outcome and depend on the interactions with other
features, which is already known to be the case when predicting
multiple educational outcomes with this set of features [9, 17]. For
all the selected features, we compute effect sizes using Cliff’s Delta
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Table 1: Topic areas description.

Topic area Skills Kappa
Numbers Integers, number sense operations, ordering numbers, number line, interpreting number line,

prime numbers, rounding and scientific notation
0.936

Basic Operations Addition, subtraction, multiplication, division, multiplication of positive and negative numbers,
simple calculation, reciprocal, order of operations, multi-column addition, and multi-column
subtraction.

0.954

Algebra Algebra symbolization, algebraic manipulation, making sense of algebraic expressions,
comparing expressions, equation concept, equation solving, interpreting linear equations, and
algebraic relations.

0.878

Decimals, Fractions, and
Percentages

Proportions, fraction concept, comparing fractions, reducing fractions, fraction multiplication,
fraction division, adding decimals, subtracting decimals, multiplying decimals, dividing
decimals, finding percentages, discount, and fraction, decimals, and percentage equivalence.

0.966

Geometry Area concept, perimeter, volume, area of the circle, circumference, meaning of pi, triangles,
congruence, pythagorean theorem, similar triangles, sum of interior angles, supplementary
angles, properties of geometric figures, properties of solids, surface area and volume, rotations
and transversals, and triangle inequality.

0.971

Exponents and square
root

Exponents and square root. 1.000

Factors and multiples Divisibility, least common multiple, prime number. 1.000
Inequalities Inequality solving. 1.000
Functions Patterns, relations, and functions, pattern finding, evaluating functions, slope, rate, and

substitution.
0.865

Graphing Graph shape, graph interpretation, reading graphs, comparing points, reading points, and
finding the slope in a graph.

1.000

Probability Probability, combinatorics, and Venn diagrams. 0.795
Statistics Statistics, measurement, mean, mode, median, and stem and leaf plot. 0.928

and conduct a Mann-Whitney U test to reveal the overall direction
of associations.

For students who did not attempt any problem in a specific
topic area, we applied the mean output from the corresponding
detector for that topic, calculated across all students with available
data, as the imputation method. While more advanced imputation
techniques could have been used to potentially improve model
performance, our main objective was to identify the most relevant
predictors. Therefore, we chose not to employ these sophisticated
methods to avoid the inherent assumptions of relatedness that
imputation makes, especially considering that the missing data in
our study was likely not random.

4 RESULTS

4.1 Comparison between enrolled and not

enrolled students, and STEM/non-STEM

students

Table 2 presents a comparison of the mean BKT estimates for each
topic area, contrasting students who enrolled in college with those
who did not. Themean BKT estimates were statistically significantly
higher for enrolled students across all topic areas, except for Inequal-
ities (p=0.120). However, the effect sizes vary among the topic areas.
The largest effect sizes were seen for Functions (cliff’s delta=0.306;
average BKT 0.389 for enrollees versus 0.271 for non-enrollees),Dec-
imals, Fractions, and Percentages (cliff’s delta=0.297; average BKT

0.381 for enrollees versus 0.294 for non-enrollees), and Geometry
(cliff’s delta=0.291; average BKT 0.300 for enrollees versus 0.226 for
non-enrollees) whereas, apart from Inequalities, Graphing (cliff’s
delta=0.169) and Factors and Multiples (cliff’s delta=0.206) had the
smallest effect sizes. Generally, these effect sizes reveal that, while
those who enrolled in college tended to have higher knowledge
estimates after completing their experience with ASSISTments—
statistically significantly so—the differences were nonetheless only
moderately large. Comparable outcomes are observed when ex-
amining the AUC values. The classifiers that utilized Functions,
Decimal, Fractions, and Percentages, and Geometry as their sole inde-
pendent variables obtained the highest performance (with AUCs of
0.649, 0.641 and 0.644, respectively). In contrast, models employing
Factors and Multiples, Graphing, and Exponents and Square Root
achieve an AUC smaller than 0.6. Finally, for the detector based on
the BKT estimation of Inequalities, the AUC (0.512) was just above
0.5, indicating that its performance is near to chance.

The results from comparing students pursuing STEM versus non-
STEM careers differ from the findings around enrollment. Although
STEM students typically have higher mean BKT estimates across
all topics, only three differences stand out as statistically significant
after the Benjamini-Yekutieli correction (Functions, Algebra, and Ge-
ometry). This diminished statistical disparity between populations
could be due simply to the smaller sample size. However, effect sizes
were also generally smaller than those seen for college enrollment.
Only Inequalities topic area (cliff’s delta=0.228; average BKT 0.437
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Table 2: Comparison of mean BKT estimates for each topic area between enrolled and not enrolled students. For each topic

area, the number of students who solved at least one problem in that area is included.

Topic area Number
of

Enrolled
Stu-
dents

Number
of Not
Enrolled
Stu-
dents

Mean BKT
Estima-

tion(Enrolled
Students)

Mean BKT Es-
timation(Not
Enrolled
Students)

Effect
Size

(Cliff’s
Delta)

Mann-
Whitney
U Test

(p-value)

Benjamini-
Yekutieli
correction
(alpha)

Logistic
Regres-
sion Test
AUC score

Test AUC
Score

Standard
Deviation

Numbers 979 501 0.536 0.432 0.271 <0.001 0.004 0.622 0.049

Basic Operations 993 508 0.517 0.422 0.248 <0.001 0.005 0.616 0.040

Algebra 1080 600 0.334 0.250 0.238 <0.001 0.011 0.605 0.032

Decimal,

Fractions, and

Percentages

1077 587 0.381 0.294 0.297 0.001 0.015 0.641 0.030

Geometry 1077 598 0.300 0.226 0.291 <0.001 0.003 0.644 0.041

Exponents and

square root

829 416 0.688 0.580 0.241 <0.001 0.009 0.593 0.021

Factors and

Multiples

597 284 0.647 0.541 0.206 <0.001 0.012 0.557 0.060

Inequalities 485 233 0.344 0.289 0.072 0.120 0.016 0.512 0.088
Functions 1062 572 0.389 0.271 0.306 <0.001 0.001 0.649 0.046

Graphing 1027 564 0.535 0.458 0.169 <0.001 0.013 0.589 0.035

Probability 1058 574 0.270 0.178 0.241 <0.001 0.008 0.610 0.047

Statistics 752 352 0.450 0.336 0.265 <0.001 0.007 0.603 0.039

Table 3: Comparison of mean BKT estimates for each topic area between STEM and non-STEM students. For each topic area,

the number of students who solved at least one problem in that area is included.

Topic area Number
of STEM
students

Number
of non-
STEM
students

Mean BKT
Estima-

tion(STEM)

Mean BKT
Estimation(Non-
STEM)

Effect
Size

(Cliff’s
Delta)

Mann-
Whitney
U Test

(p-value)

Benjamini-
Yekutieli
correction
(alpha)

Logistic
Regres-
sion Test
AUC score

Test AUC
Score

Standard
Deviation

Numbers 116 414 0.546 0.538 0.006 0.922 0.016 0.457 0.024
Basic Operations 116 424 0.545 0.501 0.112 0.062 0.011 0.510 0.048
Algebra 124 459 0.404 0.326 0.197 0.001 0.003 0.574 0.047

Decimal, Fractions,
and Percentages 122 455 0.429 0.379 0.147 0.012 0.007 0.516 0.081
Geometry 124 457 0.345 0.292 0.178 0.002 0.004 0.541 0.061

Exponents and
square root

101 358 0.729 0.665 0.123 0.057 0.009 0.521 0.048

Factors and
Multiples

71 248 0.684 0.642 0.096 0.215 0.015 0.543 0.066

Inequalities 56 206 0.437 0.337 0.228 0.009 0.006 0.537 0.049
Functions 122 451 0.459 0.378 0.203 <0.001 0.001 0.577 0.037

Graphing 117 443 0.599 0.542 0.125 0.037 0.008 0.527 0.054
Probability 125 445 0.327 0.280 0.099 0.089 0.012 0.514 0.050
Statistics 96 315 0.496 0.448 0.104 0.122 0.013 0.523 0.033

for STEM careers versus 0.337 for non-STEM), and Functions (cliff’s
delta=0.203; average BKT 0.459 for STEM careers versus 0.378 for
non-STEM) had effect sizes above 0.2, whereas the effect sizes for
three topic areas were below 0.1. The high cliff’s delta for Inequal-
ities represented a substantial contrast to the lack of significance
of this topic area for predicting enrollment. The performance of

the classifiers yields similar findings, where ten models perform
near to chance (AUC<0.55), and none achieve an AUC value above
0.6. From this perspective, the models employing BKT estimates of
Functions and Algebra show the highest performance (with AUCs
of 0.577 and 0.574, respectively).
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Table 4: Topic areas selected within the best model for each ML algorithm predicting college enrollment using BKT estimates as

features. ML models were tested using 4-fold school-level cross-validation. Topic areas selected in the best-performing model

of all the ML algorithms are shown in bold.

Topic Area Logistic
Regression

Random
Forests

Support Vector Machine Multi-Layer
Perceptron

Numbers X X X X

Basic Operations X X - X
Algebra - X X -
Decimals, Fractions, and Percentages X - - X
Geometry X - X X
Exponents and square root X - X X
Factors and Multiples - X X -
Inequalities X X X X

Functions X X X X

Graphing - X - X
Probability - X - -
Statistics X X X X

Test AUC Score
(Standard Deviation)

0.684 (0.050) 0.656 (0.039) 0.655
(0.048)

0.683
(0.046)

4.2 Enrollment and STEM career prediction

using forward selection considering BKT

estimations for all topic areas

We used four different machine learning techniques to assess the
predictive capacity of BKT estimates for college enrollment. Table 4
shows the topic areas utilized in the most effective models derived
from each of the four ML techniques. As discussed above, these
features were selected using a forward feature selection algorithm
with AUC as the performance indicator. The AUC values for these
ML models range between 0.655 and 0.684. Logistic Regression
and Multi-Layer Perceptron were the techniques with the highest
performance with AUCs of 0.684 and 0.683, respectively. This per-
formance is very similar to the AUC of 0.686 reported by [25], who
used the same dataset but incorporated data on students’ affective
states and disengaged behaviors as well as the knowledge estimates.

The topic areas selected by the forward selection are aligned with
the hypothesis tests and effect sizes previously observed. Functions,
the topic area with the largest effect size, was consistently the
initial choice in the forward selection of all the ML techniques.
Furthermore, Statistics and Numbers, which both have effect sizes
above 0.25, were also selected by the best models across the four
ML techniques. Interestingly, even though the knowledge estimate
for Inequalities didn’t display a statistically significant difference
between enrollees and non-enrollees, it was deemed beneficial by
all ML models when combined with information from other topics.
No topic areas were excluded across all techniques.

Table 5 shows the results of the forward feature selection when
predicting STEM career selection. Functions, which is the topic area
with the second highest effect size and the lowest p-value, was
chosen in the top models across all the ML techniques. This result
highlights Functions as a pivotal area for predicting both college
enrollment and STEM career. In contrast, other topic areas such
as Statistics, Geometry, and Basic Operations, prominent in models

for college enrollment, were absent in the STEM career predic-
tion models. Additionally, all ML models for STEM career selection
have lower performances than those for college enrollment (AUCs
ranging from 0.595 to 0.618), with Random Forest being the best
performing technique, contrasting with the AUC of 0.692 reported
by [32] for this task, who included several additional features. This
higher difference with the benchmark performance for this task
when exclusively considering knowledge estimates for the predic-
tion models compared to college enrollment prediction, suggests
that affective states and disengaged behaviors may be more use-
ful for predicting the choice of a STEM career than for predicting
college enrollment itself.

4.3 Enrollment and STEM career prediction

considering affective states and behaviors

detectors as features

To explore the impact of additional variables on predictions for
college enrollment and STEM career selection (as in [20, 25, 26, 32]),
we incorporated the average levels of each affective state and dis-
engaged behavior from every subject area into the forward feature
selection algorithm. Table 6 presents the AUC for the best model
across the four ML techniques for predicting both longitudinal
outcomes. For college enrollment predictions, our top models (Lo-
gistic Regression, AUC=0.693) only very slightly outperformed the
previous benchmark set in this dataset (AUC=0.686; [25]). In con-
trast, when predicting STEM career selection, even our best model
(Random Forest, AUC = 0.660) underperformed the best prior result
obtained for this task using this dataset (AUC=0.692; [32]), although
that paper included a range of other features that are outside the
scope of our current research questions.

After including affective states and disengaged behaviors as fea-
tures, the mean performance improvement for predicting STEM
career selection (0.049) was more than twice higher than the ob-
served AUC improvement for predicting college enrollment (0.021).
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Table 5: Topic areas selected on the best model for each ML algorithm predicting STEM career selection using BKT estimates as

features. ML models were tested using a 4-fold school-level cross-validation. Topic areas selected in the best-performing model

of all the ML algorithms are shown in bold.

Topic Area Logistic
Regression

Random
Forests

Support Vector
Machine

Multi-Layer
Perceptron

Numbers X X - -
Basic Operations - - - -
Algebra X X - X
Decimals, Fractions, and Percentages - - X -
Geometry - - - -
Exponents and square root X X X -
Factors and Multiples - - X X
Inequalities X - X -
Functions X X X X

Graphing - - - -
Probability - X X -
Statistics - - - -
Test AUC Score
(Standard Deviation)

0.597 (0.030) 0.618 (0.026) 0.601
(0.045)

0.595
(0.037)

Table 6: Best-performing model for each ML algorithm predicting college enrollment and STEM career selection using BKT

estimations, behavior detections, and affect detections as features. Each cell corresponds to the mean and standard deviation

of the AUC for each specific model. ML models were tested using a 4-fold school-level cross-validation. The mean and the

standard deviations of the improvement of the models when adding disengaged behavior and affective state detections as

features are included.

Topic Area Logistic
Regression

Random
Forests

Support Vector
Machine

Multi-Layer
Perceptron

Mean
Improvement

College Enrollment 0.693 (0.050) 0.692 (0.037) 0.691
(0.046)

0.686
(0.041)

0.021 (0.015)

STEM Career 0.649 (0.040) 0.660 (0.043) 0.643
(0.064)

0.654
(0.046)

0.049 (0.009)

This result suggests that data on affective states and disengaged
behaviors (broken out by topics) can be more relevant for predicting
the choice of a STEM career than for college enrollment.

Table 7 shows the mean decrease in impurity feature importance
(FI) of a RF model with factory default settings. As mentioned be-
fore, we selected the RF model because it was the best-performing
model for STEM career selection prediction, and the feature im-
portance calculation is straightforward based on the splits across
the decision trees [8]. Even though it was not the top model for
predicting college enrollment, the difference in its AUC with the
best-performing model was less than 0.002. The cumulative im-
portance of BKT estimations remains the highest among all the
features of the model (cumulative FI of 0.300). Within these BKT es-
timates, Functions (FI of 0.059), Decimals, Fractions, and Percentages
(FI of 0.055), and Geometry (FI of 0.052) are the topic areas with
the highest feature importances, mirroring the results observed in
the effect sizes between enrollees and non-enrollees. Those are the
only features with FI higher than 0.05.

Among affective states, frustration and confusion stand out with
the highest cumulative FI (0.159 and 0.147, respectively). Specifi-
cally, frustration detectors for Functions, Algebra, and Geometry are
the only features surpassing a FI of 0.4, aside from BKT estimates.
However, when comparing frustration levels between enrollees
and non-enrollees, only the Algebra topic displays a statistically
significant difference, with a moderate effect size (cliff’s delta=0.1;
see Table 8), indicating a slight unexpectedly positive association
between experiencing frustration inAlgebra and college enrollment.
Meanwhile, confusion detectors for Algebra, Graphing, and Basic
Operations are still important for predicting college enrollment
(each with FI higher than 0.3). However, among these confusion
detectors, only Inequalities shows a statistically significant differ-
ence, and the effect size is moderately small (cliff’s delta of 0.133).
Engaged concentration in Geometry and Graphing, and the bore-
dom detector within Graphing, also have a FI surpassing 0.3 in the
college enrollment prediction, but do not have statistically signif-
icant differences between enrollees and non-enrollees. Although
many affect/topic area combinations do not have statistically sig-
nificant differences between the two groups of students, some of
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Table 7: Topic areas selected on the best-performing model for each ML algorithm predicting college enrollment using BKT

estimations, behavior detections, and affect detections as features. Each cell corresponds to the Mean and standard deviation of

the feature importance for each specific feature. ML models were tested using a 4-fold school-level cross-validation.

Topic Area BKT Gaming Off Task Engaged
Concentration

Confusion Frustration Boredom Total

Numbers 0.045
(0.003)

- - - - - - 0.045

Basic Operations - 0.028
(0.002)

0.031
(0.002)

- 0.031
(0.002)

- - 0.090

Algebra - - - - 0.039
(0.003)

0.043 (0.004) - 0.082

Decimals, Fractions,
and Percentages

0.055
(0.003)

0.039
(0.002)

- - - - - 0.094

Geometry 0.052
(0.004)

0.017
(0.003)

- 0.039
(0.004)

- 0.042 (0.002) - 0.150

Exponents and
square root

0.034
(0.003)

- - - - 0.031 (0.002) - 0.065

Factors and
Multiples

- - 0.020
(0.001)

- - - - 0.020

Inequalities 0.016
(0.003)

- 0.040
(0.003)

- 0.016
(0.002)

- - 0.072

Functions 0.059
(0.005)

0.039
(0.002)

- - 0.043 (0.002) - 0.141

Graphing 0.039
(0.002)

- - 0.034
(0.002)

0.033
(0.002)

- 0.031
(0.002)

0.137

Probability - 0.035
(0.002)

0.031
(0.008)

- - - - 0.066

Statistics - - - - 0.028
(0.001)

- - 0.028

Total 0.300 0.158 0.122 0.073 0.147 0.159 0.031 1

them are still valuable for enhancing the prediction performance.
This suggests that these affective states may influence educational
outcomes in ways that are not straightforward or solely tied to
knowledge levels.

The gaming detector is the feature with the third highest FI (cu-
mulative FI of 0.158). As with confusion and frustration, the fact that
gaming the system still has high FI, particularly for Functions and
Decimals, Fractions, and Percentages (FI of 0.039 in both cases and
cliff’s deltas of -0.171 and -0.163 respectively), suggests that gaming
impacts performance beyond just through lower knowledge despite
the connections between gaming and knowledge (e.g. [1, 25]). Con-
trasting with the mixed results of confusion, gaming has a negative
statistically significant association with college enrollment for all
the topic areas included in the model, as well as having the largest
(negative) effect sizes among all the features, although still lower
than almost all the BKT estimates. Off-task behaviors within In-
equalities, Probability, and Factors and Multiples are also selected
by forward feature selection, showing a statistical difference for
Factors and Multiples between enrollees and non-enrollees with
modest positive effect size (cliff’s deltas of 0.129). In general, Geom-
etry, Functions, and Graphing are the topic areas with the highest
cumulative feature importance among all (cumulative FI of 0.150,

0.141 and 0.137, respectively). The final model incorporated at least
one feature from each topic area.

Feature importances shown in Table 9 reveal that confusion de-
tectors (cumulative FI of 0.244) surpass BKT estimates (cumulative
FI of 0.229) in importance for predicting STEM career selection.
This shift in the prominence of BKT estimates, coupled with the
pronounced impact seen when integrating data on affective states
and disengaged behaviors, further emphasizes that BKT estimates
might play a more critical role in college enrollment predictions
than in STEM career choices, while the importance of affective
states and disengaged behaviors rise in career selection predictions.
Within the model, the topic areas represented by BKT estimates are
Functions (FI of 0.100), Algebra (FI of 0.077), and Inequalities (FI of
0.052). As mentioned before, these areas also exhibited the largest
effect sizes in the comparison between STEM and non-STEM stu-
dents. Notably, in the particular case of Algebra, the BKT estimate
overshadows all affective state or disengaged behavior detectors
in importance, contrasting to the trends noted in college enroll-
ment predictions. This underscores that while the relevance of
BKT estimates might wane for career choice predictions (among
college enrolled students), and the affective states gain more rele-
vance, knowledge remains an important predictor. Depending on
the content of each topic area, either the knowledge itself or the
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Table 8: Comparison of mean of each feature and topic area selected by the top performing model predicting college enrollment.

Statistically significant differences are shown in bold.

Feature Topic Area Mean(Enrolled
Students)

Mean(Not
Enrolled
Students)

Effect Size
(Cliff’s
Delta)

Mann-
Whitney U

Test (p-value)

Benjamini-Yekutieli
correction (alpha)

Functions 0.234 0.278 -0.171 <0.001 0.001

Gaming the

System

Decimals, Fractions, and

Percentages

0.251 0.287 -0.163 <0.001 0.001

Probability 0.258 0.307 -0.149 <0.001 0.002

Basic Operations 0.219 0.258 -0.136 <0.001 0.003

Geometry 0.254 0.290 -0.143 <0.001 0.003

Inequalities 0.287 0.267 0.094 0.013 0.007
Off Task Basic Operations 0.312 0.309 0.033 0.291 0.010

Probability 0.310 0.309 0.071 0.017 0.007
Factors and Multiples 0.264 0.256 0.129 0.001 0.005

Engaged Geometry 0.533 0.529 0.037 0.215 0.009
Concentration Graphing 0.539 0.538 0.001 0.805 0.014

Algebra 0.125 0.124 0.015 0.600 0.013
Graphing 0.120 0.120 0.021 0.478 0.012

Confusion Basic Operations 0.119 0.133 -0.035 0.257 0.010
Statistics 0.125 0.151 -0.097 0.009 0.006
Inequalities 0.132 0.108 0.133 0.004 0.005

Functions 0.128 0.128 0.018 0.570 0.012
Frustration Algebra 0.141 0.131 0.100 <0.001 0.004

Geometry 0.140 0.138 0.043 0.141 0.008
Exponents and square root 0.116 0.116 -0.012 0.718 0.013

Boredom Graphing 0.436 0.436 0.029 0.354 0.011

experienced affective states and behaviors can take prevalence for
the model.

Within the confusion detectors, the topic areas selected are Prob-
ability (FI of 0.103), Basic Operations (FI of 0.075) and Exponents and
Square Root (FI of 0.066). For all these topic areas, the BKT estimates
are not selected as features.While the omission of the BKT estimates
might stem from collinearity between affective states and knowl-
edge, there is not a clear and significant relation between confusion
and learning gains [17, 26] to imply the degree of collinearity that
would cause the model to exclude the BKT estimates. Thus, effec-
tively navigating this affective state, which already holds relevance
in enhancing college enrollment chances, is even more important
for selecting a STEM major.

For engaged concentration, often linked to better learning
[11, 17, 23], there’s a higher potential for greater collinearity with
BKT estimates, compared to other affective states, which could
influence feature selection. However, results indicate that both en-
gaged concentration and knowledge are pertinent for STEM career
selection. For the Functions topic area, which is the most relevant
for STEM career prediction (cumulative FI of 0.203) and has the
highest AUC among the single-feature models (see Table 3), the
model equates the importance of both knowledge and the state of
engaged concentration (FI of 0.100 and 0.103, respectively). This
result suggests that engaged concentration provides insights to the
model beyond just promoting learning. In other words, it implies
that the importance of affective states stems not only from the

learning they may facilitate but also from students’ perceptions of
their learning journey, especially within specific topic areas, un-
derscoring again the value of scaffolding and supporting positive
affect during educational experiences.

The relevance of the frustration (cumulative FI of 0.056) and
off-task detectors (cumulative FI of 0.058) diminishes in the STEM
career prediction compared to the college enrollment model. On
the other hand, the gaming the system detector still retains its high
importance, particularly for topic areas of Probability and Statistics
(FI of 0.094 and 0.078, respectively). The boredom detector persists
as the least important feature (cumulative FI of 0.055), mirroring
observations from the college enrollment model. This may stem
from the established association between gaming and boredom
[11, 17], leading to potential collinearity between these features.
However, Almeda & Baker [1] also found no significant association
between boredom and STEM career selection, even when boredom
was considered alone.

When comparing the cumulative FIs of topic areas with the ef-
fect sizes and statistical differences between STEM and non-STEM
careers, Functions (cumulative FI of 0.203) remains as the most
relevant topic area for distinguishing these two groups. Beyond
knowledge estimates, Probability and Exponents and Square Root
also stand out as important topic areas in this differentiation (cu-
mulative FI of 0.197 and 0.179, respectively) over other topic areas,
such as Inequalities or Algebra that showed a statistical difference
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Table 9: Topic areas selected on the best-performingmodel for eachML algorithm predicting STEMmajor enrollment using BKT

estimations, behavior detections, and affect detections as features. Each cell corresponds to the Mean and standard deviation of

the logistic regression coefficient for each specific feature. ML models were tested using a 4-fold school-level cross-validation.

Topic Area BKT Gaming Off Task Engaged
Concentration

Confusion Frustration Boredom Total

Numbers - - - - - - - -
Basic Operations - - - - 0.075

(0.007)
- - 0.075

Algebra 0.077
(0.017)

- - - - - - 0.077

Decimals, Fractions,
and Percentages

- - - - - - - -

Geometry - - - 0.083
(0.006)

- - - 0.083

Exponents and
square root

- - 0.058
(0.004)

- 0.066
(0.013)

- 0.055
(0.006)

0.179

Factors and
Multiples

- - - - - 0.056 (0.006) - 0.056

Inequalities 0.052
(0.008)

- - - - - - 0.052

Functions 0.100
(0.006)

- - 0.103
(0.007)

- - - 0.203

Graphing - - - - - - - -
Probability - 0.094

(0.005)
- - 0.103

(0.011)
- - 0.197

Statistics - 0.078
(0.008)

- - - - - 0.078

Total 0.229 0.172 0.058 0.186 0.244 0.056 0.055 1

Table 10: Comparison of mean of each feature and topic area selected by the top performing model predicting STEM career

selection.

Feature Topic Area Mean(STEM)Mean(Non-
STEM)

Effect Size
(Cliff’s Delta)

Mann-Whitney U
Test (p-value)

Benjamini-Yekutieli
correction (alpha)

Gaming the Probability 0.234 0.256 -0.058 0.317 0.007
System Statistics 0.218 0.249 -0.124 0.066 0.003
Off Task Exponents and Square Root 0.275 0.296 -0.019 0.774 0.015
Engaged Functions 0.534 0.531 0.046 0.432 0.010
Concentration Geometry 0.518 0.517 -0.001 0.916 0.017

Probability 0.136 0.138 -0.020 0.723 0.014
Confusion Basic Operations 0.100 0.125 -0.117 0.054 0.002

Exponents and Square Root 0.110 0.095 0.046 0.479 0.012
Frustration Factors and Multiples 0.104 0.100 0.065 0.379 0.009
Boredom Exponents and Square Root 0.408 0.419 -0.068 0.292 0.005

and larger effect sizes for the STEM career comparison when con-
sidering BKT estimates exclusively. This result suggests again the
high importance of affective states and disengaged behaviors on
each topic area beyond their interplay with gaining knowledge,
particularly for predicting career selection. Interestingly, no statis-
tically significant results emerged when performing statistical tests
to determine the directions of the aforementioned associations (see
Table 10). These findings strongly indicate that while these features

(especially confusion) are important for predicting STEM career
selection, their impact is neither uniform nor straightforward.

Lastly, three topic areas were filtered out by our top performing
model for STEM career prediction: Decimals, Fractions and Per-
centages, Numbers, and Graphing. We hypothesize that these areas
might be pertinent to a range of majors beyond just STEM, ren-
dering them less essential as predictors. However, one could argue
that Basic Operations area serves a similar broad-based function,
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yet the confusion related to this area still holds notable importance
for predicting STEM career selection. We previously observed that
of these areas, only Decimals, Fractions and Percentages showed a
significant difference when comparing the BKT estimates of STEM
and non-STEM major enrollees, although with a relatively modest
effect size. Further studies are required to discern why neither the
BKT estimates, the affective states, nor the disengaged behaviors
from these three areas were deemed relevant by the predictive
model.

5 DISCUSSION AND CONCLUSION

In this study, we investigated how knowledge of several math-
ematical topic areas, along with affective states and disengaged
behaviors within those topic areas, are associated with both college
enrollment and career selection (STEM vs non-STEM). Although
knowledge is a key predictor for both outcomes, the data reveals
that the knowledge gap for STEM careers is smaller than for col-
lege enrollment. While all topic areas except Inequalities showed a
significant difference between college enrollees and non-enrollees,
only Functions, Algebra, and Geometry showed a significant differ-
ence for the STEM major comparison, being all of them positively
associated with the participation in a STEM career. The feature
importances of the models also show a higher relevance of knowl-
edge when predicting college enrollment than for career selection.
By contrast, affective states, particularly confusion in Probability
and Basic Operations, and engaged concentration in Functions and
Geometry, become more important for STEM career prediction.

These results suggest that the level of knowledge can be the
most relevant factor in determining whether or not a student is
able to enroll in a college program. However, among those stu-
dents with the minimum knowledge required to enroll in college,
affective states become more relevant when choosing a specific
major and future career. In line with our findings, prior research
has shown that experiencing confusion negatively affects interest
and vocational self-efficacy in STEM [22]. Although in some cases
positively resolved confusion can lead to improved learning gains
[12], experiencing confusion may also result in reduced motivation
to study careers related to the areas where they felt this confu-
sion. This complex relation between confusion and educational
and career outcomes was seen in the range of positive, negative,
and non-significant associations found within the statistical tests,
despite the clear contribution of this variable to model performance
(particularly in predicting STEM career selection). By contrast, pre-
vious studies have shown that engaged concentration is positively
associated with interest and vocational self-efficacy in STEM [22].
In that case, the positive effects of experiencing engaged concen-
tration in class, an affective state associated with the concept of
Flow [6], not only helps to improve learning outcomes [17] but also
the motivation to study majors related to those subjects. However,
the statistical tests for engaged concentration did not reveal signifi-
cant differences between the groups compared, suggesting that the
association between longitudinal outcomes (mainly STEM career
selection) and this feature is more nuanced than just a straightfor-
ward connection with being more or less concentrated.

Among the two disengaged behaviors considered in this study,
gaming the system stands out as the most important predictor for

both longitudinal outcomes, showing a negative association with
both, and a higher relevance for predicting STEM career choices,
(also see [1, 9]). Notably, gaming the system was the only construct
where statistical tests revealed significant differences between col-
lege enrollees and non-enrollees, perhaps due to the lower sample
size for this construct. Specifically, for the prediction of STEM
choices, gaming the system in Probability and Statistics stand out
as two of the most important features of the model. This finding
again demonstrates that affective states and disengaged behaviors
can be more relevant for predicting career of choice than predicting
college enrollment. In contrast, off-task behavior is more relevant
in predicting college enrollment than STEM career, also showing a
positive significant association with college enrollment, although
the effect sizes are small. In neither case is it one of themost relevant
features. This result is also observed for frustration, which is more
relevant to predicting college enrollment than for STEM career
selection. However, once again, knowledge estimates, primarily in
Functions,Decimal, Fractions, and Percentages, andGeometry, are the
most important features for predicting college enrollment, rather
than off-task behavior or frustration.

One limitation to our analysis comes from the feature importance
(FI) calculation. All explainable AI methods have limitations [29]
and mean decrease in impurity FI is an appropriate method where
relationships are complex and contingent and where variables are
not independent. However, mean decrease in impurity FI does not
allow us to draw conclusions about positive or negative associations
between any of the features and the outcome. For this reason, our
findings on the high importance of confusion, engaged concentra-
tion, and gaming the system in predicting STEM enrollment do not
necessarily indicate that each of these affective states or disengaged
behaviors individually are positively or negatively associated with
the longitudinal outcome. Indeed, as discussed above, no affective
state had significant differences between students who selected a
STEM career and those who did not, a major contrast to the signifi-
cant differences observed in the knowledge estimates of five topic
areas when comparing these two populations. However, these FI
measures allow us to observe that, when considering knowledge
estimates, affective states, and disengaged behaviors in the same
model, confusion, engaged concentration, and gaming the system
in the previously mentioned areas (confusion in Probability and
Basic Operations, engaged concentration in Functions and Geome-
try, and gaming the system in Probability and Statistics) stand out
over other features as the most important predictors, primarily for
STEM career choice. For this reason, these features on these topic
areas, and their interactions with others, especially with knowl-
edge, should be studied more deeply to recognize their potential
interplay in career selection and to propose possible interventions
to improve learning outcomes.

For example, the math problems presented to students in areas
where knowledge level and negative affect are negatively associ-
ated with the desired learning outcomes might be overly difficult,
leading to substantial confusion, or too easy, resulting in boredom,
hindering productive confusion that often promotes deeper learn-
ing. It is also possible that some problems are presented in an overly
abstract manner. In such cases, students may benefit from a stronger
connection between these subjects and their practical applications
in real life, to sustain their motivation. Additionally, students might



LAK ’24, March 18–22, 2024, Kyoto, Japan Andres Felipe Zambrano and Ryan S. Baker

be surrounded by a context that prioritizes correct answers over
the learning process itself, encouraging behaviors like gaming the
system. Overall, the outcomes seen for these students are likely
multiply-determined, requiring differentiated interventions.

Finally, it is worth noting that our findings pertain to a sin-
gle learning system and period of time. Replicating these findings
within different platforms, domains and other contexts is essen-
tial. However, doing so may be challenging, as the acquisition of a
comparable dataset that spans from middle school observations to
ultimate college enrollment would span years. Collecting this data
set required multiple grants and school-platform data agreements
that have become considerably less feasible in the United States
since this project was completed [5]. For this reason, the ASSIST-
ments Longitudinal Dataset used in this project, currently the only
long-term dataset available with this kind of information, serves as
a substantial reference for further analysis of potential factors that
promote long-term student achievement. Still, we emphasize again
the importance of facilitating the replicability of such studies. By
studying and understanding how learning and engagement in dif-
ferent topic areas relate to long-term student achievement, we can
identify areas to prioritize in instructional enhancement research.
Through the development of more effective strategies to support
and engage students, we can inspire students to enroll in college
and cultivate a love for STEM fields.
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