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ABSTRACT 
This paper describes the design and evaluation of personalized 
visualizations to support young learners’ Self-Regulated Learning 
(SRL) in Adaptive Learning Technologies (ALTs). Our learning 
path app combines three Personalized Visualizations (PV) that are 
designed as an external reference to support learners’ internal 
regulation process. The personalized visualizations are based on 
three pillars: grounding in SRL theory, the usage of trace data and 
the provision of clear actionable recommendations for learners to 
improve regulation. This quasi-experimental pre-posttest study 
finds that learners in the personalized visualization condition 
improved the regulation of their practice behavior, as indicated by 
higher accuracy and less complex moment-by-moment learning 
curves compared to learners in the control group. Learners in the 
PV condition showed better transfer on learning. Finally, students 
in the personalized visualizations condition were more likely to 
under-estimate instead of over-estimate their performance. Overall, 
these findings indicates that the personalized visualizations 
improved regulation of practice behavior, transfer of learning and 
changed the bias in relative monitoring accuracy.  
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1 Introduction  
In the field of learning analytics, it has often been suggested that 
providing learners with a tangible reference to their learning 
process is a powerful way to support Self-Regulated Learning 
(SRL)[31, 35]. For example, the Open Learner Model movement 
proposes to display learners’ data to support their SRL [15, 25] and 
similar propositions have been made from an SRL perspective [31]. 
Yet few learner-faced dashboards have been developed with a 
strong foundation in SRL theory [20]. This study describes the 
design of personalized visualizations, i.e. learner-faced dashboard 
that are tuned to the needs of individual students, to support young 
learners’ regulation and learning in Adaptive Learning 
Technologies (ALTs). These personalized visualizations are 
grounded in SRL theory and based on learners’ trace data. The 
visualizations are derived using the moment-by-moment-learning 
curve (MbMLC) algorithm [8]. Previous research indicated that 
MbMLC provides valuable indicators of how learners regulate their 
learning over time and could potentially be used within 
personalized visualizations [26]. Moreover, integrating MbMLC 
with ALT data allowed us to determine learners’ SRL support 
needs [24].  

In this paper we describe a study into the effects of personalized 
visualizations on young learners’ regulation and learning in the 
context of an Adaptive Learning Technology for primary 
education. We first relate this work to the other work on learner-
faced dashboards to support SRL, then we outline the COPES 
theory on SRL as a theoretical basis for developing personalized 
visualizations, and finally we describe how the design of the 
personalized visualizations in the learning app provides an external 
mirror for students internal SRL process.  

1.1 State of the art on learner-faced dashboards 
Dashboards have been defined as: “Single displays that aggregated 
different indicators about learners, learning processes and or 
learning contexts into one or multiple visualizations” [32]. 
Research around dashboards traditionally has a strong focus on 
learning analytics and educational data and less attention is paid to 
the connection to learning theory [20]. Although SRL theory is the 
most common foundation for learner-faced dashboards [13], most 
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Figure 1: Personalized visualizations related to the COPES 
model. 
of these dashboards visualize indicators of learner performance to 
support students’ regulation [14]. Performance feedback alone is 
not always enough to help learners to translate progress data into 
actions that improve regulation[16]. Although there are some good 
examples of trace data informed progress charts [3] and intelligent 
tutor systems to support SRL [2, 6], there is limited work within 
learner-facing dashboards that use trace data to support SRL [3, 13]. 
Partially this lack of research may stem from challenges in 
understanding what trace data reveal about SRL [4, 11] as well as 
finding ways to visualize temporal and sequential characteristics of 
SRL in a meaningful way for learners [26, 27] . In this paper, we 
discuss our work to provide learners  personalized visualizations to 
support learners’ regulation. Below we elaborate on how SRL 
theory, specifically the COPES model, informed the design of the 
personalized visualizations used in the learning path app.  

1.2 Designing personalized visualizations based on 
SRL theory 

The COPES model describes the internal regulation processes that 
learners enact to regulate their learning [33]. The central 
assumption in this model is that learning is a goal-oriented process 
in which learners make conscious choices working toward their 
learning goals [25]. In order to reach these learning goals learners 
use metacognitive activities to control and monitor their learning 
and engage in appropriate levels of effort [7]. Regulation in the 
COPES model unfolds in four loosely coupled phases: i) in the task 
definition phase, learners develop an understanding of the task, ii) 
during the goal setting phase, learners set their goals and plan their 
learning, iii) in the enactment phase, learners execute their plans 
and control and monitor progress iv) in the adaptation phase, 
adjustments are made when progress towards the goals is not 
proceeding as planned. These phases are enacted in the context of 
task and learner conditions that drive operations, strategies and 
tactics performed by learners. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The control and monitoring loop are at the heart of COPES 
model and especially important in the context of ALTs [24]. 
Learners need to monitor and control their work in order to answer 
the problems correctly and make progress to their goals. Accuracy 
can be conceptualized as a function of a student’s knowledge and  
effort [20]. Hence effective self-regulating learners in ALTs adjust 
their effort to ensure that their planned learning goals are achieved 
and control their learning to ensure a productive level of accuracy 
[31]. 

It is well established that learners often face a utilization 
deficiency [33], the failure to adequately activate control and 
monitoring during learning. The internal regulation process as 
described by the COPES model can be supported by the external 
regulation in technology. Dashboards are potentially a powerful 
tool to overcome the utilization deficiency as they can help learners 
by showing them objective data about their current performance, 
how this performance is related to their learning goals, and what 
progress they have made [19]. In the context of ALTs, personalized 
visualizations attuned to individual learners needs, can show 
learners the alignment between learning goals and their actions.. 
This form of external feedback can consequently drive cognitive 
evaluation and help learners to optimize their strategies, make 
adjustments to plans, or choose different actions to reach their 
learning goals 

In designing the learning path app, we follow the four phases 
of the COPES model to support learners with external cues 
following internal regulation processes. Learner-faced dashboards 
function as a visual layer between the internal regulation of the 
learner and the external regulation support of the ALT. Their 
primary function is to support learners to explicitly engage in the 
four phases that are critical for successful self-regulation. As such, 
the different visualizations in the learning path app function as a 
reference for learners to better understand their own regulation 
process. In essence, the app is a mirror for learners to better monitor 
their progress and recognize the need for control actions and thus 
drive their internal regulation process, see Figure 1. 

First, in the task definition phase, learners need to develop an 
understanding of the task to be able to formulate appropriate 
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learning goals. In this phase, learners are supported by the overview 
screen which summarizes the tasks for the learner. Within the scope 
of our current study this entails the visualization of three subskills 
that need to be mastered by the learners. The dolphins each 
represent one subskill.  

Second, in the goal setting phase, learners need to translate 
their task perception into goals. The goal setting screen functions 
as an external trigger to support learners to articulate when learning 
goals are reached. This is based on the idea of feed-up, which 
comes from the feedback literature [19].  Feed-up represents an 
external trigger to support learners to articulate when learning goals 
are reached. Feed-up interventions are used to support learners to 
explicitly set goals and standards for regulation. These standards 
help learners to formulate criteria that indicate how to know that a 
learning goal is reached. This helps learners to engage in cognitive 
evaluations in the enactment phase. Consequently, the goal setting 
screen is developed to ground learners’ cognitive evaluations in the 
enactment phase of the COPES model. In our current study, we ask 
learners to determine goals at different time scales: during the 
lesson, during rehearsal and their overall goal so that they have 
standards throughout their learning process to evaluate their 
progress. 

Third, in the enactment phase, learners work towards their 
learning goals while they monitor their progress and control their 
actions and strategies in case needed. The need for adaptation is 
determined by cognitive evaluation in which learners compare their 
current product to their standard to determine progress. Previous 
research has shown that young learners’ monitoring accuracy is 
often low [1, 18, 22]. Young learners tend to overestimate their 
performance, which leads to unjustified regulation actions. For 
example, when a learner believes he is making strong progress, he 
may reduce his effort. In case of overestimation this leads to 
unjustified reduction of effort and could harm further progress.  

Also in the context of ALTs, we found that learners tend to 
overestimate their performance, yet there also is a group of learners 
that consistently underestimates their performance in this context 
[23]. Therefore the learning path app includes performance 
feedback to provide learners with an accurate representation of 
their actual performance. In the overview screen progress is 
symbolized by the position of the dolphin and the dolphins 
attributes (hoop, ball) which indicate whether learning goals are 
reached. One layer deeper, on the goal setting screen, detailed 
information on performance is provided which indicates the exact 
relation between goals (standards) and current performance 
(products). This screen can be viewed as an external cue to trigger 
cognitive evaluation, i.e. to compare the goals set with learning 
products to evaluate progress. This helps learners realize when their 
progress is not as expected and they need to adapt (small scale 
adaptation in figure 1), for instance by re-evaluating their degree of 
effort. This idea is in line with the notion of feed-forward for the 
feedback literature. Feed-forward is an external cue to re-evaluate 
plans and adjust strategies. For example when a learner’s verbalizes 
how to adapt learning strategies and actions to ensure future 

                                                                 
1 In the original language it has a more positive sound to it; the terms do not translate 
well. 

learning. Hence this screen is a cue for learners to explicitly 
evaluate progress and determine the need for control actions [19]. 

Fourth, in the adaptation phase. learners enact adaptations. As 
described above, small-scale adaptations are often embedded in the 
enactment phase when learners adjust effort or strategies based on 
cognitive evaluations. Large scale adaptations entail reflection and 
drive improved regulation in the next learning cycle. The learning 
path screen shows personal progress over time. Here the moment-
by-moment-learning curves indicate when learners were likely to 
have learned during their practice session [8, 9]. These curves show 
the probability that a learner has learned at each problem-solving 
opportunity [8]. This information is deducted from learners’ data 
traces in ALTs and specifically highlights the relation between 
learning actions, in this case problems solved, and progress in the 
learning path [25]. Previously, student MbMLCs were found to 
have five characteristic clusters: immediate drop, immediate peak, 
double spikes, close multiple spikes and separated multiple spikes 
were found [24]. In the learning path app these clusters function as 
personalized visualizations to show learners how they enact 
regulation over time [26]. The names have been adjusted for young 
learners in “high swimmer (immediate drop), quick swimmer 
(immediate peak), climber in two steps (double spikes), slow 
climber (close multiple spikes) and climber and descender 
(separated multiple spikes),”1. Hence, in this study MbMLC curves 
help learners to explicitly understand the their progress over a 
lesson to formulate adaptations for the next lesson.  

Learners are given support to translate the personalized 
visualisations into regulation actions. A classroom poster helps 
learners in deriving meaningful actions from the learning path 
visualizations. Each of the 5 personalized visualisations are 
explained on the poster and tips to improve regulation are given.  
According to the learning analytics process model learners need to 
translate awareness into action, via reflection and sense making 
[14]. Therefore, on the poster an explanation and explicit actionable 
information is given.  For example, learners that have a close 
multiple spikes tend to be dependent on external regulation [25]and 
are advised to increase effort and pay extra attention to their 
accuracy.  

To summarize, the learning path app contains 3 personalized 
visualizations (overview, goal setting and learning path) that are 
designed to support learners’ internal regulation. The visualizations 
are explicitly developed as external feedback to help learners to 
create a valid reference for their regulation process. Based on this 
reference learners can optimize their internal regulation process. In 
the learning path app, trace data from the ALT are used to provide 
learners with continuous feedback about their performance, 
progress and how progress towards their learning goal is related to 
their actions. In this way we extend the role of learner-faced 
dashboards from discussing what learners learned to also 
incorporate how learners have learned. Hence the learning path app 
is expected to be a first step towards developing a novel way to 
overcome learners’ utilization deficiencies in SRL. In the next 
section, we compare this app to other SRL support tools. 
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1.3 Comparison with other SRL support 
The personalized visualizations we present here are distinct from 
other support technique that have been used to assist learners’ 
regulation such as prompts [10], scaffolding [7, 29] and 
pedagogical agents providing feedback [5, 30]. These techniques 
have been effective for improving learning, but they were less 
successful in developing self-regulated learning skills that sustain 
effective regulation in absence of support. A drawback of these 
techniques is that they do not help learners to make explicit 
inferences about how their actions are related to progress towards 
learning goals [36]. In the learning path app, we aim to make this 
relation explicit for learners. Traditional SRL support facilitated 
local corrections, but it did not provide sufficient information to 
train monitoring accuracy or teach learners to determine the need 
for small and large scale adaptations themselves. Tentatively, this 
support may not trigger learners’ own cognitive evaluation, which 
is essential for learners to develop their SRL skills [7]. In line with 
this argument , it has been emphasized that in order to engage in 
accurate cognitive evaluations, learners need reliable, revealing, 
and relevant data to draw valid inferences about their own 
regulation process [34]. Learner-faced dashboards have been 
proposed as a potential external cue to help learners make those 
inferences and our approach is an initial attempt to design these 
dashboards.  

1.4 This study 
This study evaluates the effects of the learning path app on 
students’ regulation, learning and monitoring accuracy while 
learning in an ALT. Based on earlier research, we expect that the 
learning app will trigger learners to articulate goals and supports 
cognitive evaluation. We also hypothesize that the explicit goal 
setting and performance feedback in the overview screen and goal 
setting screen will support learners to evaluate their progress, and 
that  the MbMLC in the learning path screen will help learners to 
better understand their regulation over time and determine what 
course of action to take. This external support to optimize 
regulation is expected to improve regulation of practice behavior 
(effort and accuracy), learning (post-test and transfer) and 
monitoring accuracy (absolute and relative calibration). We expect 
that learners in the experimental condition will improve their 
regulation, leading to more effort (hypothesis 1) and higher 
accuracy (hypothesis 2), less complex moment-by-moment 
learning curves (hypothesis 3) and consequently greater learn more 
(hypothesis 4) and better transfer (hypothesis 5). Finally we 
hypothesize that learners in the experimental condition will show 
less deviation in their absolute calibration accuracy (hypothesis 6) 
and less overestimation in their relative calibration (hypothesis 7). 

2 Method 

2.1 Participants 
The participants in this study were 92 grade 5 learners. The four 
participating schools were located in the north-east of the 
Netherlands and had a diverse population. The learners were 
between 10 and 12 years old with a mean of 10.15 (sd =.45 .46), 

and 38 boys (42%) and 54 girls (58%) participated in this study. 
Five classes were randomly assigned, three to the experimental 
condition (n=60) and the two to the control condition (n=32). The 
inclusion criterion was that learners had to participate in at least 3 
out of 4 lessons. Based on this criterion 16 learners were excluded 
from the sample. Moreover, 4 learners missed the pre-test and 1 
learner did not participate in the post-test.  

2.2 Design 
This study was conducted with a quasi-experimental pre-test - post-
test design, see Figure 2. Learners in the experimental condition 
(PV condition) worked with the learning path app. They set goals 
at the beginning of every lesson and evaluated their progress in the 
learning path app at the start of each lesson. Learners in the control 
condition completed a puzzle at the start of each lesson to keep total 
time investment equal over the two conditions. Learners received 
instruction and practiced the three arithmetic subskills in 3 lessons 
for 55 minutes each on three consecutive days. The design of the 
first three lessons followed the direct instruction model including 
teacher instruction, guided practice, class wide practice and 
individual practice. In the fourth lesson learners were instructed to 
practice those skills for which they needed most practice in. The 
pre-test took place prior to the first lesson and after the completion 
of all lessons learners took the post-test and the transfer test. 

  
Figure 2: Study design 

2.3 Materials 
In the experimental condition, learners started their lesson with the 
learning path app in which they had 3 personalized visualizations 
to improve their regulation: the overview screen, goal setting screen 
and the learning path screen (see Figure 3 and 4).  

First, in the overview screen, learners clicked on the dolphin of 
a particular arithmetic subskill. Then, learners could set learning 
goals in the goal setting screen, which they did at the start of each 
lesson. Students were prompted to set goals were for the current 
lesson, for the rehearsal lesson and for overall proficiency. Learners 
indicated their learning goals by how proficient they wanted to 
become at that particular subskill. They represented this by moving 
the flag on a scale from 0 to 100%. The goal setting screen was 
designed to act as a feed-up intervention [19] in which learners 
clearly articulated their learning goal and set their standards to 
evaluate their progress. 

Second, at the beginning of the next lesson, learners could see 
their progress in the overview screen and in the goal setting screen. 
In the overview screen learners, saw their progress on all the three 
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subskills, which was communicated by the position of the dolphin. 
The placement of the dolphin on the horizontal axis indicated the 
ability score of the learner as calculated by the ALT. Additionally, 
the size of the dolphin increased with the number of problems 
solved. Finally, the dolphin’s color provided information about the 
progress in relation to the overall learning goal set. A grey dolphin 
indicated that the learning goal was not yet set, an orange dolphin 
indicated the goal was not yet reached, and a green dolphin showed 
that the learning goal had been successfully completed. The 
attributes indicated the progress in relation to the lesson goals. A 
hoop around the dolphin indicated that the lesson goal was reached 
and a ball shows the rehearsal lesson goal was obtained.  

Third, when learners clicked on a dolphin, they went back to 
the goal-setting screen, which now showed more detailed 
information on the learner’s progress. The blue bars indicated 
performance based on the ability score as calculated by the ALT. 
When the ALT did not yet provide an ability score, learners were 
shown a grey bar. The color of the flag shows how this progress is 
related to the goals set to support learners. An orange flag indicates 
that the learner has not yet reached their goal and a green flag 
indicates that particular goal is reached. The overview screen and 
the goal setting screen were designed to act as a feed-forward 
intervention in which learners clearly articulate progress towards 
their learning goal and engage in cognitive evaluation. 

 
Figure 3: Overview and goal setting screen 

Fourth, when learners clicked on the progress bars, they went 
to the learning path screen. Here learners see the learning paths for 
the selected subskill. The personalized visualizations are based on 
the Moment-by-Moment Learning Curves calculated based from 
the ALT data. Learners were shown 5 clusters called high swimmer 
(immediate drop), quick swimmer (immediate peak), climber in 
two steps (double spikes), slow climber (close multiple spikes) and 
climber and descender (separated multiple spikes), see Figure 4. 
The learning path visualized how learners’ actions contribute to 
their performance and how they made progress towards their goals 
over time. To make these visualizations understandable, the 
meaning of the learning paths were explained to learners on posters 
and by the teachers. On the poster, students were also given 
recommendations to adapt their regulation in the next lesson. For 
example, when a learner showed a close multiple spike pattern, this 
means that he/she learned the skill slowly and that more practice is 
still needed. Learners were advised to actively monitor their 
accuracy and increase their effort to ensure they were make 
progress towards their goals. Hence, these patterns may help 
learners understand the development of their effort and accuracy 
during  the previous  lesson and make adjustments in the next 
lesson. 

Additionally, teachers were given instructions to support 
learners to understand the learning paths and their implications. A 
protocol was provided to the teachers that explicitly discussed the 
function of each step in the intervention. Moreover, teachers were 
instructed to help learners formulate actions they could take 
depending on their learning paths. 

 
Figure 4: Learning path screens with recommendations 
 
2.3.1 The Adaptive Learning Technology. The adaptive learning 
technology (ALT) used in this study is widely used for spelling and 
arithmetic education throughout the Netherlands. This technology 
is applied in blended classrooms in which the teacher gives 
instruction, after which learners practice on their tablets. Learners 
are also given direct feedback (correct or incorrect) after entering 
an answer to a problem. Teachers can follow learners in teacher 
dashboards [28]. A lesson has different phases. First, learners 
practiced in the class-wide practice stage on non-adaptive 
problems, which were the same for each student in the class. Next, 
learners worked on adaptive problems, which were selected after 
each problem solved, based on an estimate of the learner’s 
knowledge: the ability score [21], calculated using a derivative of 
the ELO algorithm [17]. Based on the learner’s ability score, the 
ALT selected problems with a probability of 75% that the learner 
will answer the problem correctly. After a learner had answered 
approximately 25 problems, the system had a reliable estimate of 
their ability score. This ability score was used as an indicator of 
performance in the goal setting screen, the bleu bars see figure 3. 
The difference between the previous ability score and the new score 
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was used as an indicator of progress. In the goal setting screen this 
is the difference between the second and the third bar.  
 
2.3.2 Subskills learned. The three subskills all included different 
aspects of measurements of capacity (see Table 1). The Dutch 
metric system units for measuring capacity were used. The 
problems related to the first subskill “Calculate capacity using the 
formula: ‘capacity = length x width x height” were relatively easy 
because learners were given a formula to solve the problem. Also, 
in this subskill, examples were used to support learners’ problem 
solving. The problems related to the second subskill “Convert from 
common capacity units to cubic meters” were of medium difficulty. 
Learners were asked to convert from common capacity units into 
cubic meters (cm3, dm3, m3). Finally, problems within the third 
subskill “Convert cubic meters units to liter units” were hard. 
Learners were asked to convert cubic meters (cm3, dm3, m3) into 
cubic liter units (cl3, dl3, l3) without a formula. 

2.4 Measurements 
2.4.1. Pre- and post-test.  The pre- and post-test consisted of 24 
items, 8 items per subskill. The items in the pre- and post-test were 
structurally similar, but different numbers were used. The difficulty 
level of the items, as indicated by the ALT, was used to balance 
both tests. Figure 5 provides examples of the items for each 
subskill. The overall Cronbach’s alpha for the whole pre-test was 
.81 with .90 for subskill 1, .85 for subskill 2 and .54 for subskill 3 
respectively. The overall Cronbach’s alpha for the post-test was .79 
with 0.61 for subskill 1, 0.85 for subskill 2 and 0.55 for subskill 3 
respectively. Learning gain was calculated as the difference 
between pre- and post-test. The transfer test consisted of 15 items 
that tested students’ deeper understanding of the relations between 
meter units and liter units. The Cronbach’s alpha for the transfer 
test was .68 

Figure 5: Examples of problems for each subskills  
Table 1: Measures and their definition 

Learning measures Definition 
Prior knowledge Pre-test, one per subskill 

Post Knowledge  Post-test, one per subskill 

Gain Post-test - pre-test per subskill 

Process measures Log file data  
Unique problems Number of unique problems completed per 

subskill 
Accuracy unique problems Correct unique problems / total unique 

problems completed 

 
2.4.3. Measures from the ALT. The knowledge a student has 
acquired on a subskill is expressed in their ability level as calculated 

by the ELO algorithm. This score is given by a number between 0 
and 600. In order to compare this value to the student’s goals we 
translated the ability score into a percentage. The logs of the ALT 
stored data on learners’ practice activities, including a date and time 
stamp, student identifier, problem identifier, learning objective 
identifier, ability score after each problem and correctness of the 
answer given. Based on this information the following indicators of 
effort and accuracy were calculated. Effort is measured by one 
indicator per subskill: the number of unique problems a student 
completed to practice this subskill. Accuracy is calculated by 
dividing the number of correctly answered problems by the total 
number of problems completed. Table 1 provides an overview of 
all measures calculated and their definition. 
 
2.4.3. Moment by Moment learning curves. The moment-by-
moment learning curves were derived based on an algorithm that 
calculates the probability that the student has just learned the skill 
[8]. This probability is plotted across the learner’s unique problems 
solved on a single skill over time, to derive the MbMLC. We 
developed a Python script to automatically classify the form of 
MbMLC, following the rules in Table 2. Peaks were defined as 
points that are more than .015 higher than the point before and after.  
 
Table 2: Coding rules for classifying moment-by-moment 
learning curves. 

Curve Rules
Immediate drop The curve starts high, drops quickly after solving 

problems and remains low afterwards.
Immediate peak The curve starts low, peaks within the first 10 

problems and remains low afterwards. 
Double spikes The curve starts low and shows 2 peaks over the 

course of problem solving. 
Close multiple 
spikes 

The curve starts low and shows more than 2 peaks 
within the first 25 problems and remains low 
afterwards.

Separated 
multiple spikes

This curve starts low and continues to show 
multiple peaks, even after 25 problems

 
 2.4.4. Measures of monitoring accuracy. To measure monitoring 
accuracy, we asked students to predict how many problems they 
would solve correctly per subskill on the post-test. We calculated 
an absolute monitoring accuracy (predicted correct – actual correct) 
to understand the distance between the expected performance and 
actual performance, and a relative difference to understand the 
direction of bias learners have in their monitoring accuracy. We 
speak of overestimation when a learner’s expected score is higher 
than their actual score and underestimation in the case where a 
learner’s expected score is lower than the actual score.  

2.5 Procedure 
On the first day learners completed the pre-test (30 minutes) after 
which the first instruction lesson of 55 minutes was given. The two 
other instruction lessons and the repetition lesson were given on 
separate consecutive days following the first lesson. On the fifth 
day learners completed the post-test (30 minutes) and the transfer 
test (15 minutes). Each instruction lesson started with the learning 
path app for the PV condition and the puzzle for the control 
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condition for 10 minutes. In the PV condition, students were asked 
to look at the overview screen, consult their learning paths and set 
goals for this lesson. Next, instruction on the subskill was given by 
the teacher (10 minutes). The instruction was standardized by using 
an instruction protocol. After the instruction, the teacher and 
students practiced 6 to 8 problems together in guided practice. Then 
learners continued to work on problems within that particular 
subskill. First, learners completed a set of non-adaptive problems 
(15 problems) which were the same problems for all learners in the 
class. Next, they continued to work on adaptive problems for the 
remaining time in the lesson. The total individual practice time was 
30 minutes. Finally, 5 minutes were spent for reflection on the 
lesson. In the fourth lesson the three subskills of the previous 
lessons were repeated and practiced with adaptive problems. 
Learners were instructed to select subskills depending on their 
progress and need for practice.  

2.6 Analysis 
In order to assess how the personalized visualizations affected 
effort, accuracy, and transfer, a MANOVA analysis was performed 
with effort, accuracy and transfer on skill 1, skill 2 and skill 3 as 
within-subject factors and condition as a between-subject factor. A 
repeated measures MANOVA was used to assess how learning path 
app affected learning of the 3 subskills over time. The within-
subject factors were the pre and post-test scores (time) on the  three 
skills (subskill 1, subskill 2 and subskill 3). Again condition was 
used as a between subject factor. In order to investigate how the 
learning path app affected learners’ MbMLC patterns we 
performed a chi-square analysis. For differences in monitoring 
accuracy between the conditions an independent samples t-test was 
used. 
 

3 Results 
Table 3: Descriptive statistics per condition 

 Subskill 1 Subskill 2 

 PV Control  PV Control  

 M SD M SD M SD M SD 
Pre-test 6.32 2.47 5.60 2.85 1.46 2.02 .70 1.23 

Post-test 7.39 .73 6.57 1.59 6.32 1.85 5.00 2.44 
Gain 1.07 2.55 1.16 2.58 4.86 2.34 4.16 2.75 
Effort  53.42 21.61 55.47 17.85 60.33 22.76 57.00 20.54 
Accuracy  .81 .08 .76 .10 .64 .16 .49 .15 

 Subskill 3     

 PV Control     

 M SD M SD     

Pre-test 1.48 1.61 1.03 1.15     

Post-test 4.11 1.87 2.97 1.19     

Gain 2.63 2.02 1.93 1.51     

Effort  61.58 24.88 69.72 41.11     

Accuracy  .63 .11 .55 .12     

3.1 Effect on regulation of practice behavior 
First, we determined the effects of practice behavior on regulation, 
looking at effort, accuracy and MbMLCs. For effort, there was a 
significant main effect of skill, F(2, 85) = 6.31, p < 0.002 indicating 

that learners showed different effort on the three subskills. There 
was no significant interaction between skill and condition, F(2, 85) 
= 1.62, p < 0.05: Learners did not show more effort in the PV 
condition than the control condition (Hypothesis 1, rejected). For 
accuracy, there was a significant main effect of skill, F(2, 85) = 
6.31, p < 0.002 indicating that learners showed different accuracy 
on the three subskills. There was a significant interaction between 
skill and condition, F(2, 85) = 4.88, p < 0.01: in the PV condition 
learners had higher accuracy than learners in the control condition 
(Hypothesis 2, accepted). For MbMLCs, there was no significant 
difference for subskill 1, but we found a significant difference in 
the relative occurrence of different MbMLC patterns between the 
two conditions for skill 2 and 3, chi-square analysis 2(df = 5, N = 
92) = 11.38, p < .05 and 2(df = 4, N = 92) = 12.38, p < .01, see 
Figure 6. For subskill 2, the PV condition showed more immediate 
peaks and double peaks, whereas the control condition showed 
more close and separate multiple spikes . For subskill 3, the PV 
condition showed more immediate peaks and double spikes 
whereas the control condition showed more close and separate 
multiple spikes (hypothesis 5 accepted). 
 
Table 4: MbMLCs per subskill per condition 

Curve  PV Control 
 S1 S2 S3 S1 S2 S3 
Immediate drop 75 2 2 66 6 3 
Immediate peak 15 47 33 28 35 9 
Double spikes 8 28 30 3 9 19 
Close multiple spikes 2 7 22 3 16 31 
Separated multiple spikes 0 15 13 0 34 38 

 
Figure 6: MbMLC per condition and subskill 

3.1 Effect on learning  
There was a significant main effect of time, F(1 , 85) = 320.11, p < 
0.001: learners scored higher on the post-test than the pre-test. 
There also was a main effect of condition, F(1 , 85) = 15.25, p < 
0.001: learners in the PV group scored higher then learners in the 
control group and a main effect of skill, F(2 , 85) = 247.17, p < 
0.001: learners score differently on the three skills. There was an 
interaction effect between time and skill, F(2 , 85) = 43.12, p < 
0.001, which indicates difference in growth over time between the 
skills. There were no other interaction effects. Follow up analysis 
revealed that the PV group scored higher on pre-test for subskill 2  
compared to the control condition, but not for subskill 1 and 3. On  
the post-test the PV group scored higher on all three skills, but 
progress from pre to post-test was only marginally stronger on skill 
3 (see Figure 7). Overall, even though the results are in the 
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anticipated direction, hypothesis 3 is not accepted. Finally with 
respect to transfer, we find a significant difference between the PV 
condition (M = 10.68, SD = 2.41) and the control condition (M = 
9.16, SD = 3.79), t(85, 2) = 2.33, p < 0.05 (hypothesis 4, accepted). 

 
Figure 7. pre- and post-test scores per condition 

3.3 Effect on monitoring accuracy 
Table 5: absolute and relative calibration per condition 

Figure 8: Relative monitoring accuracy per condition and 
subskill 
We only found a significant difference for absolute calibration 
accuracy for subskill 1 (see Table 5), where the control condition 
was actually more accurate than the experimental condition t (2, 
89) = 2.77, p < 0.01. For relative calibration accuracy, we found 
significant difference for all three subskills. For subskill 1, learners 
in the PV condition underestimated their performance more than 
learners in the control condition, t (2, 89) = -2.77, p < 0.01. For 
subskill 2, again learners in the PV condition underestimated their 
performance, whereas learners in the control condition 
overestimated their performance, t (2, 89) = -3.64, p < 0.001. For 
subskill 3, learners in both the PV condition and the control 
condition overestimated their performance, but the effect was 
larger in the control condition , t (2, 89) = -2.75, p < 0.01. Hence 
even though there are little difference in absolute calibration there 
are clear difference in the extent to which learners over or under 

estimate themselves as a result of the working with the learning 
path app, as shown in Figure 8, although the relationship is 
complex.  

4 Discussion 
This paper described the design and evaluation of personalized  
visualizations to support young learners’ SRL in ALTs. The 
learning path app combined three personalized visualizations 
(overview, goal setting and learning path screen) that were 
designed as an external reference to support learners’ internal 
regulation. We found that learners in the personalized visualization 
condition (PV) improved regulation of their practice behavior as 
shown by increased accuracy and less complex MbMLCs for 
subskills 2 and 3 compared to learners in the control group. 
Although in the PV condition learners scored higher on the post-
test they only showed marginally more progress on the most 
difficult subskill 3. Moreover, initial differences in prior knowledge 
on subskill 2 prevent us from drawing conclusions with regard to 
learning outcomes. Learners in the PV group did show enhanced 
transfer of their knowledge to a structurally different situation. 
Finally, although both conditions scored equally on absolute 
monitoring accuracy, there was a difference in relative monitoring 
accuracy, indicating that students in the personalized visualizations 
condition were more likely to underestimate their knowledge than 
students in the control group. Overall, these findings indicates that 
the personalized visualizations affect learners accuracy during 
practicing, MbMLC and relative monitoring accuracy. Below we 
discuss these findings in depth and relate them to learner’s 
regulation. 

With regard to improved regulation of practice behavior, we 
found that the personalized visualizations in the learning path app 
did improve students’ accuracy, but did not improve effort. Effort 
was measured by the number of problems a students solved. We 
may have seen an effect, however, if a more advanced measure of 
effort was used. The MbMLC in the learning path screen had the 
goal of driving between-lesson adaptation by giving students 
feedback on their regulation in this lesson to inform their regulation 
in the next lesson. Indeed, for both subskills 2 and 3 we found an 
increase of simple curves and a reduction of complex curves (close 
and separated multiple spikes) in the personalized visualizations 
condition. Simple curves show more efficient practice behavior, 
whereas more complex curves indicate that learners had problems 
adjusting their effort and increasing their accuracy. This showed 
that an external reference for learning goals, performance and 
progress over time in different personalized visualizations indeed 
helped learners to improve their regulation of their practice 
behavior in the next lesson. 

The results on learning outcomes are partially confounded by 
initial differences in prior knowledge for subskill 2 between the PV 
and control condition. For subskill 1 and 3 there were no significant 
initial differences. For all three subskills the PV condition 
significantly outperformed the control condition on the post-test. A 
marginally significant difference in progress was found, only for 
subskill 3, but the trend in the data pointed towards improved 

 Absolute calibration Relative calibration 
 PV Control PV Control 
 M SD M SD M SD M SD 

Subskill 1  1.73 1.20 1.00 1.19 -1.66 1.29 -.87 1.28 
Subskill 2 1.63 1.81 1.81 1.51 -1.01 1.91 .62 2.29 
Subskill 3 2.10 1.58 2.53 1.26 1.22 2.34 2.47 1.39 
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progress in the PV condition. This is further reinforced by the 
improved transfer performance of the PV condition. It has been 
reported in previous research that improved regulation is more 
beneficial for transfer compared to immediate learning [12], a 
finding replicated in this study.  

Finally, we expected that goal setting and cognitive evaluations 
with performance-based feedback would support learners 
monitoring accuracy during learning. Although we found no 
difference in absolute monitoring accuracy, interesting differences 
were found with respect to relative monitoring accuracy. This 
indicates that while students in both conditions were comparably 
inaccurate in their perceptions of themselves, the direction of the 
bias was different. Learners in the PV condition under-estimated 
their performance more often than learners in the control condition. 
This indicates that the tendency to overestimate performance which 
is widely reported on in research [18, 22] was reduced by the 
learning path app, although it was replaced with a different bias.  

Other work has outlined four groups of learners with different 
SRL support needs, namely a self-regulation group, a teachers 
regulation group, system regulation group and an advanced system 
regulation group [25]. This work proposed that personalized 
visualizations may to have the potential to enhance regulation 
specifically for two groups of learners namely those in the SRL and 
Teacher regulation groups. By contrast, this article argued that 
students in the system regulation and advance system regulation 
group would need more support to overcome their utilization deficit 
[25]. In this study we have found a substantial reduction of in close 
and separated multiple spikes, respectively 57% and 56% for 
subskill 2, and 30% and 65% for subskill 3. This seems to indicate 
that even for students with more advanced SRL support needs 
personalized visualizations did support regulation. Some students 
appeared to be in need of more advanced support to improve 
regulation, but this group seems smaller than the system and 
advanced regulation group. Still the proposal of human-system 
regulation that takes over parts of the regulation from the learner 
until he/she is ready to exert more control over learning could be 
beneficial for these students. Tailoring SRL support in Hybrid 
human-system regulation to each learner’s detected needs could 
further optimize learning and regulation.  

To summarize, we have found evidence for improved 
regulation of practice behavior, reduction of complex MbMLCs 
and a reduction of overestimation in monitoring accuracy (albeit at 
the cost of greater underestimation) as a result using the personal 
visualizations in the learning path app. A limitation of this study is 
the initial difference on subskill 2 which prevents strong 
conclusions with regard to learning outcomes. It is also worth 
noting that we are unable to derive which PV was responsible for 
the findings, due to studying a combination of multiple 
personalized visualizations at once. Although future studies could 
address this issue through ablating the PV, the existing 
comprehensive visualization is designed around the COPES model 
to work in combination; therefore, individual effects may be less 
than the joint effects. Finally, long-term effects of PV on the 
development of SRL skills could not be assessed in this study. To 

address this research question a longer-term intervention with the 
learning path app is needed.  
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