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ABSTRACT 

Since the beginning of educational assessment, there has been 

interest in modeling more than just what a student knows. 

However, the ease of measuring relatively simple knowledge and 

skills through multiple-choice tests has led to a field that has 

largely focused on what is easy to measure. In recent years, there 

has been increasing interest in automated assessment of students 

in a broader range of contexts, and for a broader range of 

constructs, than traditional assessment achieves.  In this paper, we 

present automated assessment that can infer boredom, a key non-

cognitive factor during student learning. We study this construct 

in the context of Reasoning Mind, a blended learning system that 

integrates a range of learning activities, embedding them into 

story-based curricula. We asses student boredom across the year 

using sensor-free automated detectors developed using a 

combination of quantitative field observations and data mining, 

validated to generalize across students and school contexts. We 

then apply these detectors to data from the entire cohort of 70,000 

students who used Reasoning Mind during the 2012-2013 school 

year. We demonstrate the use of the detectors by investigating 

how student boredom while using the Reasoning Mind blended 

learning program changes over the course of the year, and how 

different objectives and activities result in more or less student 

boredom. We find that while there is essentially no relationship 

between student boredom and the time of year, it is strongly 

related to the objectives in the self-paced Reasoning Mind 

curriculum; in particular, boredom on Reasoning Mind objectives 

is bimodal in character, with some objectives inducing 

considerable boredom while others do not. 

Categories and Subject Descriptors 

K.3.1 [Computers and Education]: Computer Uses in 

Educations – computer-managed instruction.  

General Terms 

Algorithms, Measurement 

Keywords 

Boredom, Affect detection, Curriculum 

1. INTRODUCTION 
 

Since the beginning of educational assessment, there has 

been interest in modeling more about a student than just what they 

know. For instance, as early as 1948, the first President of 

Educational Testing Services suggested measuring personal drive, 

motivation, conscientiousness, interpersonal skill, and interest 

[23], and there were serious attempts to measure personality and 

motivation starting from the 1960s [22].     

However, the ease of measuring relatively simple knowledge 

and skills through multiple-choice tests has led to a field that has 

largely focused on what is easy to measure. While criticism of this 

type of measure has been prevalent since the 1960s (e.g. [17]), the 

clean psychometric properties of multiple-choice and ease of 

validation have made it the dominant choice for educational 

assessment to this day (see, for instance, [18, 19, 26]). As a result, 

educational assessment tends to focus on what is easily measured 

through multiple-choice tests.  

In recent years, there has been increasing interest in 

automated assessment of students in a broader range of contexts,  

and for a broader range of constructs, than traditional assessment 

achieves (cf. [3, 9, 25, 35, 39, 40]). 

One construct that has emerged as a focus of research in the 

last decade is boredom. Boredom is of particular importance due 

to evidence that this affective state is associated with negative 

learning outcomes [31, 34], more so than other affective states 

such as frustration and confusion [11, 30]. Boredom can be 

detected in students using physical sensors (cf. [12]); however, 

recent work by Baker et al. [4] and Pardos et al. [30] has resulted 

in the construction of detectors of student boredom based only 

upon interactions between students and educational software. We 

apply these techniques to study boredom in the Reasoning Mind 

Genie 2 system. 

The Reasoning Mind Genie 2 system [21] is a self-paced blended 

learning mathematics curriculum for elementary and middle 

school students (current offerings cover the second through the 

sixth grades), which is implemented within classrooms. 

Reasoning Mind combines extensive professional development, a 

rigorous curriculum drawing from successful curricular design in 

Russia, and a game-like, internet-based interface. Student learning 

in Reasoning Mind takes place in “RM City,” a virtual city where 

students engage in learning activities in different “buildings.” The 

primary mode of study for students is “Guided Study,” wherein 

they are guided by a pedagogical agent named “Genie” through a 

series of learning objectives. Interspersed with the instructional 

and problem-solving modes are Speed Games, which are timed 



mental math problems designed to help students develop fluency 

in fundamental operations.  It is used by approximately 100,000 

students a year, primarily in the Southern United States.  The fifth 

and sixth grade curricula are “core” curricula; they replace the 

traditional mathematics class and are generally used for the 

students’ entire scheduled mathematics instruction time, usually 

3-5 days per week for 45-90 minutes each day.  

Given the key importance of engaging students and avoiding 

boredom for longer-term student outcomes [22, 36], a great deal 

of time and expense has been dedicated to making the Reasoning 

Mind content engaging.  Instruction and problems are presented 

alongside colorful graphics and entertaining stories featuring a 

cast of characters with which the student grows familiar.  A recent 

study using Quantitative Field Observations (QFOs) in the context 

of Reasoning Mind classroom found evidence that students find 

the system highly engaging; students had unusually high rates of 

on-task behavior and engaged concentration [27].  

However, like any curriculum, Reasoning Mind has room for 

improvement. Reducing negative affect is a key goal, with 

boredom a particular focus due to its association with worse 

student outcomes. Sensor-free boredom detectors such as those 

described above can infer student affect moment-by-moment, 

allowing detailed analysis of which contexts are associated with 

improved student affect. As such, they provide a measurement 

which is formatively useful not just for assessing the student, but 

for assessing the curriculum as well. For instance, Doddannara 

and colleagues [13] have studied which features of the design of 

Cognitive Tutors are associated with differences in student 

boredom. In studying these issues, however, it is important to be 

certain that differences in affect seen are due to the content and 

not just to the time of year; for instance, Beck [6] found that hasty 

guessing (a behavior associated with boredom [2]) was more 

frequent later in the year than earlier in the year.  

As such, in this paper, we present a method for automated, sensor-

free assessment of boredom within Reasoning Mind, developed 

and validated according to current best-practices. We then apply 

these detectors to an entire year of data of Reasoning Mind usage, 

and use the detectors to assess how student affective profile varies 

across the school year and in different objectives within the 

Reasoning Mind fifth grade curriculum.  

 

2. METHODS 

2.1 Data Set 
Detectors of student boredom were constructed based on field 

observations of students in Reasoning Mind and log data from the 

Reasoning Mind system, which was synchronized to the field 

observations.  

Expert field observers coded student affect and 

engaged/disengaged behaviors as students used the learning 

software. In this paper, we focus solely on the affect codes, and on 

boredom in specific. The coders used the HART app on a Google 

Android handheld computer, which enforced the BROMP 

protocol [29], an observation protocol developed specifically for 

the process of coding behavior and affect during use of 

educational software. As of this writing, there are 63 coders 

certified in the BROMP protocol, and the BROMP protocol has 

now been used in dozens of papers (see review in [21]). All 

coding was conducted by the third, fourth, and fifth authors. 

These three coders were previously trained in coding behavior and 

affect using the BROMP protocol, and all achieved inter-rater 

reliability with the trainer of greater than 0.6 during training, on 

par with past projects [cf. 2, 5, 24, 33]. 

Observations were conducted during the student’s regular math 

class, where students typically use the Reasoning Mind software. 

Students were coded in a pre-chosen order, with each observation 

focusing on a specific student, in order to obtain the most 

representative indication of student behavior possible. At the 

beginning of each class, an ordering of observation was chosen 

based on the computer laboratory’s layout, and was enforced 

using the handheld observation software. Setting up observations 

took a few minutes at the beginning of each class. 

Each observation lasted up to twenty seconds, with observation 

time automatically coded by the handheld observation software. If 

behavior was determined before twenty seconds elapsed, the 

coder moved to the next observation.  

Each observation was conducted using peripheral vision or side-

glances to reduce disruption. That is, the observers stood 

diagonally behind the student being observed and avoided looking 

at the student directly [2, 33], in order to make it less clear when 

an observation was occurring. This method of observing was 

previously found to be successful for assessing student behavior 

and affect, achieving good inter-rater reliability [2, 33], and forms 

the basis of the BROMP protocol. To increase tractability of both 

coding and eventual analysis, if two distinct affective states were 

seen during a single observation, only the first affective state 

observed was coded. Any behavior involving a student other than 

the student currently being observed was not coded. 

The observers based their judgment of a student’s affect on the 

student and teacher’s work context, actions, utterances, facial 

expressions, body language, and interactions with others in the 

room. These are, broadly, the same types of information used in 

previous methods for coding affect [5], in line with Planalp et al.’s 

[32] descriptive research on how humans generally identify affect 

using multiple cues in concert for maximum accuracy rather than 

attempting to select individual cues. Because detecting affect is a 

complex problem involving several interconnected cues, the 

BROMP protocol takes advantage of humans’ intuitive ability to 

determine affect in others, rather than proscribing exhaustive 

definitions of what an observer should consider. Within an 

observation, each observer coded affect with reference to five 

categories, drawn from [2]:  

 Concentrating 

 Bored 

 Frustrated 

 Confused 

Figure 1 Examples of Reasoning Mind Genie 2 content: (a) 

Theory content, (b) a Speed Game problem, (c) an example of 

writing a letter to the “Genie”. 

(a) 

(b) 

(c) 



 “?” (which refers to any affect outside of the coding scheme, 

such as delight, or any case where it was impossible to code 

student affect) 

To increase the probability of model generalizability (cf. [28]), 

data was collected across the span of several months from a 

diverse sample of students, representative of the population 

currently using Reasoning Mind. Five of the six schools were in 

the Texas Gulf Coast region.  Three of these Texas schools were 

in urban locations and served economically disadvantaged 

populations (defined as a high proportion of students receiving 

free or reduced lunch); of these three, two served predominantly 

African-American student populations, and one served a 

predominantly Hispanic student population. The other two schools 

in this region were in suburban locations, one serving mostly 

White students, and the other with a mix of student ethnicities; 

both of these schools had a lower proportion of economically 

disadvantaged students. The sixth school was a rural school in 

West Virginia, with an economically disadvantaged, majority 

White population.  See Table 1 for more detailed information 

about the observed schools.  

These observations were synchronized with the system logs of the 

students working through the Reasoning Mind system, by 

synchronizing both the HART application and the Reasoning 

Mind system to the same internet time server, leading to 

synchronization error of under 1 second.  The resulting data set 

consisted of 4891 distinct observations of student behavior for 

408 students (mean = 12.0 observations per student, standard 

deviation = 6.9), coded by three observers across six separate 

days.  

2.2 Feature Distillation 
For each observation, a clip was computed from the log data 

which matched as closely as possible to the observation (20 

seconds before observation entry time to observation entry time) 

(cf. [4, 30]), facilitated by the log synchronization procedure 

discussed above. Using the student’s activities both within the 

twenty-second window and preceding it (but not using the future), 

93 features were developed.  Some features – for example, 

whether an action was correct or not, or how long the action took 

– were computed for each action in the clip and then aggregated 

across the clip (see next paragraph for details).  Others – for 

example, the fraction of previous attempts on the current skill the 

student has gotten correct – are based on the student’s complete 

activity from the beginning of the school year.  A third category 

involves the results of other models applied to the student log (a 

form of discovery with models (cf. [15])).  For example, the 

probability that the student knows the current skill (from Bayesian 

Knowledge Tracing [10]), student carelessness [37], and features 

of the student’s moment-by-moment learning graph [3, 16] were 

all included as features. 

These 93 features were then aggregated across actions in the clip 

by a variety of methods, depending on the nature of the feature: 

mean, min, max, standard deviation, sum, presence (for example, 

‘1’ if there was any “problem” item type in the clip), count, and 

proportion (by count or by time; for example, what proportion of 

the actions in the clip were “problem” item types, and what 

proportion of the time within the clip was spent on “problems”).  

The result was a total of 278 features used to develop the boredom 

detector; examples are given in Table 3.  

2.3 Machine Learning Approach 
Detectors were built for each of the affective states described 

above; for reasons of scope, the current paper focuses on the 

detector for boredom (the other detectors achieved comparable or 

higher model goodness than boredom). Detector evaluation was 

conducted using ten-fold student-level cross-validation, whereby 

students were randomly split into ten groups and a detector was 

developed using data from nine of the groups and then tested on 

the remaining group of students, for each possible combination. 

Cross-validation at this level reduces concerns about over-fitting 

to specific students, and increases confidence that the detectors 

will generalize to new students. 

Data were re-sampled to have more equal class frequencies before 

machine learning techniques were applied (cf. [13]). However, all 

calculations of model goodness were performed on the original 

data set. 

Four algorithms were tried: JRip, J48 decision trees, step 

regression, and Naïve Bayes.  We found that step regression – 

linear regression turned into a binary classifier with a step 

function applied at a pre-chosen threshold – was most successful.  

Feature selection was via forward selection.  In this selection 

scheme, features are added one at a time (starting from the empty 

set), each time selecting the feature that most improves cross-

validated detector goodness.  For the purposes of feature 

selection, detector goodness was defined as the value of A′ [14] 

(see description below) as measured on the original data set.  

Features are added until no single feature can be added to further 

improve the goodness of the detector.  To reduce the potential for 

over-fitting, a first pass was performed in which any feature that 

yielded A′ below 0.5 (chance) in a single-feature model were 

removed from the set of possible features. 

A′, sensitivity, and specificity were used to assess detector 

goodness. A popular alternative, Cohen’s Kappa, is not 

recommended for highly skewed data such as seen in this data set 

– [20]. A′ is the probability that, given one example from each 

class (i.e. BORED and NOT BORED), the model can correctly 

 Region 

Free/Reduced 

Price Lunch White 

African- 

American Hispanic 

1 Texas (Urban) 85% 1% 84% 13% 

2 Texas (Urban) 79% 3% 32% 63% 

3 Texas (Urban) 96% 1% 10% 88% 

4 Texas (Suburban) 48% 24% 50% 17% 

5 Texas (Suburban) 33% 52% 24% 16% 

6 West Virginia (Rural) 51% 80% 16% 1% 

Table 1. Regions and demographic information for schools included in this study. 



Table 2. Confusion matrix for boredom detector. 

  Detector 

  BORED NOT BORED 
Tr

u
th

 BORED 163 151 

NOT BORED 796 1187 

 

identify which is which.  It is mathematically equivalent to the 

area under the ROC curve (AUC) used in signal detection and to 

W, the Wilcoxon statistic [14]. A value of 0.5 for A′ indicates 

performance exactly at chance, and a value of 1 indicates perfect 

performance.  In these analyses, A′ was calculated at the level of 

clips, rather than students. A′ was calculated using Baker et al.’s 

“Simple A′” calculation code [1], available from 

http://columbia.edu/~rsb2162/edmtools.html. This code calculates 

this metric using the Wilcoxon approach; the alternative approach 

of integrating the area under the curve using calculus leads to 

bugs for special cases in all known implementations.  

 

3. RESULTS OF DETECTOR 

VALIDATION 
The detector of boredom achieved cross-validated A′ = 0.64, 

moderately better than chance.  A confusion matrix for this 

detector is shown in Table 2.  The detector was somewhat better 

at getting relative ordering (A′) than making absolute distinctions; 

the sensitivity of the detector was 0.52, and the specificity was 

0.60.   The low sensitivity compared to specificity implies that the 

detector is somewhat conservative, favoring a low false positive 

rate at the expense of a higher false negative rate; however, given 

the low occurrence of boredom, the overall false negative rate is 

still quite low.  The detector captures a substantial amount of 

occurrence of boredom, and the goodness measures described 

make it appropriate for fail-soft interventions – interventions 

which are not detrimental when applied to students who are not 

bored. 

The final detector is shown in Table 3.  Boredom is positively 

correlated with the standard deviation of problem correctness 

(indicating the student was somewhat erratic across the clip) and 

to the minimum slip parameter (from Bayesian Knowledge 

Tracing) on skills in the clip (indicating that the student is 

working through material that students tend to get right if they 

know it).  It is also negatively correlated with both the number of 

actions within the clip that occurred a Speed Game and the 

fraction of the clip duration spent in a Speed Game, which 

students may find more entertaining or exciting than other 

content. 

4. Analysis 
After construction of the detectors, they were applied to the log 

data for the observed classes for the entire 2012-2013 academic 

year; this data set was comprised of 2,974,944 actions by 462 

students, including 54 students who were not present when the 

classes were observed, either because they were absent or because 

they transferred into the class after the observations were 

performed. While these detectors are likely to work for the full 

sample of Reasoning Mind students given the diverse population 

used to build them, applying them only to the original population 

is a conservative choice that increases the probability of model 

validity where used. 

The boredom detector developed here, by virtue of its goodness 

values that are above chance but fairly weak, is better for 

aggregate discovery with models analyses [15] than for 

individually-targeted interventions selected with a single cut-off. 

In using these detectors within discovery with models analyses, 

the extra information contained in the probability estimates, and 

the superior performance of A′ than sensitivity and specificity 

indicates that it is preferable to use exact probabilities from the 

model rather than resolving the probabilities into binary 

predictions.   

We use the boredom detector to investigate student affect across 

the school year and across activities in the curriculum, as 

discussed in the Introduction.  A plot of boredom vs. date is 

shown in Figure 2(a).  Note that, with the exception of a spike in 

boredom early in the school year, the plot is relatively featureless.  

There is a very weak negative correlation (-0.06) between 

boredom on a given action (aggregated by student) and the date 

on which it occurred (e.g. how far along the year it was). 

Predicting boredom by date during the year (controlling for 

student to avoid violating independence assumptions) results in a 

model that is statistically significant, R2 = 0.015, p < 0.001. 

Because the curriculum is self-paced, students are working 

through different content at any given point in the year.  Average 

boredom vs. Reasoning Mind objective is plotted in Figure 2(b).  

The Reasoning Mind Basic II (fifth grade) curriculum is made up 

of 45 objectives, indicated in the plot at 5.01 through 5.45.  Each 

student sees the objectives in the same order. Reasoning Mind 

objectives are highly interconnected, and each objective builds on 

those preceding it. This figure and the previous are scaled with the 

same y-axis to make clear the difference in variation observed; 

note that the range of average boredom values observed is much 

larger when averaged over objectives than over days, despite that 

fact that each data point in the objectives plot contained 

significantly more individual student actions.  Attempting to 

predict boredom by objective (controlling for student to avoid 

violating independence assumptions) yields a model which is 

statistically significant, p < 0.001. The resultant model has a 

model with a correlation of 0.343.   

Coefficient Feature 

+0.212 
The standard deviation, across the clip, of 
student correctness (1 or 0) on each action. 

-0.013 
The number of actions in the clip that occurred 
on Speed Game items. 

-0.070 
The fraction of the total clip duration spent on 
Speed Game items. 

-0.073 
The number of actions in the clip on items where 
the answer input was made by selecting an item 
from a drop-down list. 

+0.290 
The minimum slip parameter (P(S) in Bayesian 
Knowledge Tracing) on skills in the clip. 

-0.260 

The standard deviation, across the clip, of the 
action duration, normalized across all students, 
times the presence (1) or absence (0) of a hint 
request on the previous action. 

+0.123 Y-intercept. 

Table 3. The final boredom detector. 



Furthermore, the average boredom by objective shows a clear 

bimodal character: the average boredom value seems to alternate 

between two groups, one, comprising 21 objectives, with an 

average boredom of 0.138 and the other, comprising 23 

objectives, with an average boredom of 0.145.  The final objective 

(5.45) falls roughly in the middle of the two extremes (average 

boredom = 0.141). Assignment of student actions to groups based 

on objective (as described above, discarding objective 5.45) yields 

a moderate correlation between objective “group” (high, low) and 

boredom of 0.31 and a Cohen’s d value of 0.67, indicating that the 

difference in boredom between the two groups is 0.67 standard 

deviations.  Including both the date and the objective in a 

generalized linear fit to the data (controlling for the student to 

avoid violating independence assumptions) results in a small 

improvement in the in fit (R2 = 0.1182 vs. 0.1177 for objective 

alone).  Both objective and date are statistically significant (p < 

0.001) in such a model: for both objective and date, p<0.001. An 

analysis of the two groups of objectives did not reveal obvious 

explanatory differences; however, further analysis is ongoing to 

determine what may explain the grouping. 

Because student work in the Reasoning Mind Genie 2 system is 

self-paced, the objectives worked on by students quickly diverged 

as the year went on.  Thus, early in the school year, when most 

students are on the first four lessons (all of which were in the 

“high” boredom group) there was a peak in boredom, but as 

students diverged, boredom converged to an average value.  Note 

also that the source of the mild negative correlation between time 

of year and boredom is now revealed; the “high” boredom lessons 

are more concentrated in the early part of the curriculum (16 of 

the first 21 objectives) than in the latter half (only 7 in the 

remaining 24).  Because students are, on average, farther into the 

curriculum near the end of the school year, the result is a decrease 

in boredom over time. 

5. Conclusions 
In this paper, we have constructed automated, sensor-free 

detectors of student affect within the Reasoning Mind curriculum.  

These detectors achieve moderate goodness, with an A′ value of 

0.64. We apply these detectors to the entire school year of data 

(having validated them on data collected across the year). We then 

use the detectors to study student boredom across the school year, 

and across learning objectives. 

When the detector of student boredom was applied across the 

school year, a weak negative correlation (-0.06) with date was 

found.  However, when student activity was grouped by objective 

rather than by date, a distinct bimodal character in student 

boredom was found, which divided the curriculum into two 

similar-sized groups. 

This assessment of student boredom across Reasoning Mind 

objectives allows the evaluation of the student and the curriculum 

at a qualitatively different level than simple multiple-choice 

assessments of simple knowledge and skills. Though affect has 

been studied through Likert scale items [31], it would not be 

feasible to administer these items at the scale needed to study the 

research questions investigated here. This research is only feasible 

with next-generation assessment such as automated affect 

detectors.   

As such, a key future goal for research will be to identify the 

characteristics of low boredom and high boredom objectives. One 

method to doing so is to conduct a systematic analysis of the 

design features and content of each objective (cf. [13]).  By 

understanding which lessons are most boring and why, it will 

become possible to iteratively improve the “high boredom” 

lessons in Reasoning Mind Basic II and to guide future 

development of Reasoning Mind curriculum – reducing boredom, 

and potentially improving both learning and long-term outcomes. 
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