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Abstract. Student modeling is an important component of ITS research because 

it can help guide the behavior of a running tutor and help researchers under-

stand how students learn. Due to its predictive accuracy, interpretability and 

ability to infer student knowledge, Corbett & Anderson’s Bayesian Knowledge 

Tracing is one of the most popular student models. However, researchers have 

discovered problems with some of the most popular methods of fitting it. These 

problems include: multiple sets of highly dissimilar parameters predicting the 

data equally well (identifiability), local minima, degenerate parameters, and 

computational cost during fitting. Some researchers have proposed new fitting 

procedures to combat these problems, but are more complex and not completely 

successful at eliminating the problems they set out to prevent. We instead fit pa-

rameters by estimating the mostly likely point that each student learned the 

skill, developing a new method that avoids the above problems while achieving 

similar predictive accuracy. 
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1 Introduction 

Within the field of Intelligent Tutoring Systems (ITSs), student modeling is important 

because it can help guide interaction between a student and an ITS. By having a mod-

el of student knowledge, an ITS can estimate how knowledgeable a student is of vari-

ous knowledge components (or “skills”) over time and use that to determine what the 

student needs to practice. 

However, student modeling is also important to researchers. The parameters 

learned from BKT can be used to characterize how students learn and to evaluate ITS 

content. Examples of this include studying the effects of “gaming the system” on 

learning [8] and evaluating hint helpfulness [4], among many other studies. 

While BKT is popular and useful, researchers have found problems with fitting 

BKT models. One such problem is identifiability: there may be multiple sets of pa-

rameters that fit the data equally well [3], making interpretation difficult. Additional-

ly, the learned parameters may produce what is called a degenerate model, or a model 



that fits the data well but violates the assumptions of the approach, generally leading 

to inappropriate pedagogical decisions if used in a real system [1]. 

Two popular fitting methods in the literature, Expectation-Maximization (EM) [9] 

and brute force grid search, both suffer from identifiability. Additionally, EM can get 

stuck on local minima, and brute force comes with a high computational cost. 

Researchers have attempted to deal with these issues through strategies like limit-

ing the values brute force searching can explore [2], determining which starting val-

ues lead to degenerate parameters in EM [12], computing Dirichlet priors for each 

parameter and using these to bias the search [13], clustering parameters across similar 

skills [14], and using machine-learned models to detect two of the parameters [1]. 

This work introduces a simple method of estimating BKT parameters that sacrific-

es the precision of optimization techniques for the efficiency and interpretability of 

empirical estimation. Briefly, we estimate when students learn skills heuristically, and 

then use these estimates to help compute the four BKT parameters. Our goal is to 

efficiently produce accurate, non-degenerate BKT models. 

2 Data 

For this work, we used data from ASSISTments [7], an ITS used primarily by middle- 

and high-school students. In this dataset taken from the 2009-10 school year, 1,579 

students worked on 61,522 problems from 67 skill-builder problem sets. The skill-

builders used had data from at least 10 students, used default mastery settings (three 

consecutive correct answers to achieve mastery, ending the assignment), and had at 

least one student achieve mastery. A student’s data was only included for a specific 

skill-builder if they answered at least three questions.  

3 Methods 

In this work, we developed and analyzed a new fitting procedure for BKT. We begin 

this section by describing BKT and then introduce our empirical approach to fitting 

BKT models. Finally, we describe the analyses we performed. 

3.1 Bayesian Knowledge Tracing 

Bayesian Knowledge Tracing [5] is a student model used in ITS research that infers a 

student’s knowledge given their history of responses to problems, which it can use to 

predict future performance. Typically, a separate BKT model is fit for each skill. It 

assumes that a given student is always either in the known state or the unknown state 

for a given skill, with a certain probability of being in each. To calculate the probabil-

ity that a student knows the skill given their performance history, BKT needs to know 

four probabilities: P(L0), the probability a student knows the skill before attempting 

the first problem; P(T), the probability a student who does not currently know the skill 

will know it after the next practice opportunity; P(G), the probability a student will 



answer a question correctly despite not knowing the skill; and P(S), the probability a 

student will answer a question incorrectly despite knowing the skill. 

According to this model, knowledge affects performance (mediated by the guess 

and slip rates), and knowledge at one time step affects knowledge at the next time 

step: if a student is in the unknown state at time t, then the probability they will be in 

the known state at time t+1 is P(T). Additionally, BKT models typically assume that 

forgetting does not occur: once a student is in the known state, they stay there. 

3.2 Computing Knowledge Tracing Using Empirical Probabilities 

In this section, we present a new approach to fitting BKT models we call Empirical 

Probabilities (EP). EP is a two-step process that involves annotating performance data 

with knowledge, and then using this information to compute the BKT parameters. 

Annotating Knowledge. The first step in EP is to annotate performance data for 

each student within each skill with an estimate of when the student learned the skill. 

We assume there are only two knowledge states: known (1) and unknown (0), and do 

not allow for forgetting (a known state can never be followed by an unknown state). 

In this work, we use a simple heuristic for determining when a student learns a 

skill: we choose the knowledge sequence that best matches their performance. This is 

illustrated by Figure 1. A full description of this heuristic can be found online [6]. 

 

Fig. 1. Each of the six possible knowledge sequences are tried for a student’s performance 

history, and in this case, the best two are averaged together to get the final sequence. 

Computing the Probabilities. Using the knowledge estimates, we were able to 

compute each of the four BKT parameters for each skill empirically from the data. 

The first of these parameters is P(L0), the probability that the student knew the skill 

before interacting with the system. We can empirically estimate this by taking the 

average value of student knowledge on the first practice opportunity: 
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Equation (1) is similar to a heuristic in [11] for estimating individual student prior 

knowledge. While that paper used performance to compute a prior for each student as 

opposed to using knowledge to compute a prior for each skill as we do here, the idea 

that prior knowledge can be estimated mathematically in this way is similar. 



Using Ki and Ci as knowledge and correctness at problem i, respectively, the fol-

lowing equations are used to compute the other three BKT parameters: 
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3.3 Experiments 

In this paper, we compare BKT models fit with EM and EP in terms of predictive 

accuracy, model degeneracy, and training time. Due to space constraints, only the 

predictive accuracy results are reported here. Results for the other experiments as well 

as the code and data used in all the experiments are available online [6]. 

To fit EM, we used Murphy’s Bayes Net Toolbox for MATLAB (BNT) [10]. For 

EM, it is necessary to specify a starting point. We chose an initial P(L0) of 0.5, and set 

the other three parameters to 0.1. Additionally, we set a maximum of 100 iterations 

and used the default BNT improvement threshold value of 0.001. 

To compute the parameters using EP, we implemented the equations in the previ-

ous section in MATLAB using basic functionality. Then, we entered these values into 

the conditional probability tables of a BKT model constructed with BNT. 

4 Results 

First, we examine how predictive each method is of student performance under five-

fold student-level cross-validation. We evaluated the methods using mean absolute 

error (MAE), root mean squared error (RMSE), and A’. These metrics were computed 

for each student and then used in two-tailed paired t-tests to determine the signifi-

cance of the differences between the overall means of the two models. The degrees of 

freedom for the MAE and RMSE significance tests was one less than the number of 

students, whereas that of the A’ significance test was lower due to some students be-

ing excluded (students who gave all correct or all incorrect answers for all skills were 

excluded since A’ is undefined in such cases). The values below represent the average 

of the student metrics. Lower values of MAE and RMSE indicate better performance, 

whereas the opposite is true of A’. The results are shown in Table 1. 

Table 1. Prediction results for the two methods of learning BKT parameters: Expectation 

Maximization and Empirical Probabilities 

Learning Method MAE RMSE A’ 

EM (BNT) 0.3830 0.4240 0.5909 

EP 0.3742 0.4284 0.6145 

 



Although the differences between these metrics are all statistically significant accord-

ing to two-tailed paired t-tests (MAE: t(1,578) = 10.88, RMSE: t(1,578) = -6.74, A’: 

t(1,314) = -7.01, p < 0.00001), the differences are small. Therefore, we believe the 

two methods are comparable in terms of predicting performance. 

We also tested EM and EP in terms of model degeneracy and fitting time. In sum-

mary, we found that only EM learned degenerate parameters, and that EP runs signifi-

cantly faster than EM. The full results are available online [6]. 

 

5 Conclusions and Future Work 

From this work, it appears that a simple estimation of knowledge followed by compu-

ting empirical probabilities may be a reasonable approach to estimating BKT parame-

ters. We found that EP had comparable predictive accuracy to that of EM. Additional-

ly, it is mathematically impossible for EP to learn theoretically degenerate guess and 

slip rates (i.e. above 0.5) [6], and it is at least as good as EM at avoiding empirically 

degenerate parameters, based on tests suggested and used in [1]. We also found it was 

considerably faster than EM [6]. 

An improvement to EP would be to annotate knowledge more probabilistically. EP 

makes only binary inferences of knowledge based on predictive performance. For 

example, EP always considers incorrect responses on the first problem to be made in 

the unknown state, even though some of these are slips. Therefore, a more probabilis-

tic approach may be able to produce better parameter estimates. 

EP could be used as a tractable way to help improve accuracy by incrementally in-

corporating data into models as it becomes available during a school year. This would 

improve models for skills with little or no previous data and make use of student and 

class information. If a skill has little or no previous data, using current school year 

data may improve estimates of its parameters. Also, it has been shown that incorporat-

ing student [11] and class [15] information can improve predictive performance, 

which cannot be done before the start of a school year. 

While EP achieves similar accuracy to EM and appears not to learn degenerate pa-

rameters, we did not perform any external validations of the learned parameters for 

either approach. Such an analysis would help determine how much we can trust EP 

parameters, especially when they differ from those learned by EM. 
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