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Abstract. The development of real-time affect detection models often depends 

upon obtaining annotated data for supervised learning by employing human ex-

perts to label the student data. One open question in labeling affective data for 

affect detection is whether the labelers (i.e., human experts) need to be socio-

culturally similar to the students being labeled, as this impacts the cost and fea-

sibility of obtaining the labels. In this study, we investigate the following research 

questions: For affective state labeling, how does the socio-cultural background 

of human expert labelers, compared to the subjects (i.e., students), impact the 

degree of consensus and distribution of affective states obtained? Secondly, how 

do differences in labeler background impact the performance of affect detection 

models that are trained using these labels? To address these questions, we em-

ployed experts from Turkey and the United States to label the same data collected 

through authentic classroom pilots with students in Turkey. We analyzed within-

country and cross-country inter-rater agreements, finding that experts from Tur-

key obtained moderately better inter-rater agreement than the experts from the 

U.S., and the two groups did not agree with each other. In addition, we observed 

differences between the distributions of affective states provided by experts in 

the U.S. versus Turkey, and between the performances of the resulting affect de-

tectors. These results suggest that there are indeed implications to using human 

experts who do not belong to the same population as the research subjects. 

Keywords: Affective State Labeling, Student Affect Detection, Cross-Cultural, 

Inter-Rater Agreement, Intelligent Tutoring Systems (ITS). 

1 Introduction 

Automated detection of learner affect has matured as an area of Artificial Intelligence 

in Education (AIED) research, with models of learner affect now published for a range 

of learning environments [1-3]. These models have formed the basis of a range of sci-

entific analyses, including the relationship between affect and student outcomes [3], 

and the differences in learning outcomes between brief and extended affect [4]. They 

have also been used as the basis for automated interventions which improve students’ 
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affect and engagement, and in turn their learning, by responding to negative affect in 

real time [5, 6]. 

These automated detectors of affect are typically created through a supervised learn-

ing approach, where the first step is to collect some kind of external, ground-truth meas-

ure of a student’s affect at specific points in time, whether those labels are from self-

report, video coding, or field observation. These ground-truth labels are often useful 

scientific interests in their own right, and are used for analyses such as understanding 

the dynamics of student affect over time [7], and the affect that students experience 

within MOOCs [8]. 

Early work on the expert coding of affect and emotion, such as the Facial Action 

Coding System (FACS) focused on deriving rationally understandable and widely-

agreed, culturally universal indicators of affect [9]. However, the inter-rater reliability 

for this approach was poor [10]. More recent approaches to the expert coding of affect 

have relied on more subjective judgments. Two such approaches, the Baker Rodrigo 

Ocumpaugh Monitoring Protocol (BROMP) [11] and the Human Expert Labeling Pro-

cess (HELP) [12], have each achieved inter-rater agreement measures over 0.6, indi-

cating considerably higher levels of agreement than FACS. Neither BROMP nor HELP 

makes claims to cultural universality; in fact BROMP has been re-normed in four dif-

ferent countries and its coding manual explicitly warns against using raters from a dif-

ferent national origin than the students whose affect is being coded [11]. However, the 

empirical basis for this caution remains insufficient, and many affective computing re-

search groups continue to use raters from a different national origin than the subjects 

they are studying, both for AIED research and within other application areas. Even with 

BROMP, there are anecdotal reports of individuals successfully achieving acceptably 

high inter-rater reliability outside their original home country, after living in a different 

country for several years [11].  

If it was possible to use the same affect labeling protocol internationally without re-

norming, wide use of affect labeling would become considerably more feasible. In ad-

dition, if it were feasible to use raters of any national origin, it would become more 

feasible to conduct affective computing research and development even in countries 

where protocols have already been normed. 

As such, this paper investigates the degree to which human expert labelers from the 

same country as the students being labeled actually achieve higher inter-rater reliability 

than experts from a different country, when labeling the affective states of learners us-

ing an online platform for mathematics. In doing so, we analyze both the within-country 

and cross-country agreements in affect labeling, as it is possible that experts from a 

different country than students may agree with each other but disagree with experts 

from the students’ country, a pattern that would suggest systematic error and bias in 

affect labeling. 
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2 Methodology Overview 

2.1 Research Questions 

In this research, we investigate whether human experts who are from the same country 

as the subjects (i.e., students) would provide different affective state labels than the 

ones who are from another country. We hypothesize that such difference could be at-

tributed to the fact that same-culture experts will be familiar with the learners’ context 

(going through the same schooling experience, being familiar with the learning context) 

and culture (sharing the similar values and conceptions about affect in learning, as well 

as similar modes of expressing affect). Hence, they could provide more reliable affect 

labels. Towards this end, this study investigates the following research questions: How 

is the socio-cultural background of human expert labelers, compared to the students, 

associated with the degree of consensus and distribution of affective states labeled, for 

the task of affective state labeling? Secondly, how would the differences in labelers’ 

background impact the performance of affect detection models that are trained using 

these labels? 

2.2 Data Collection and Labeling 

Research Context and Data Collection. We collected data from 9th-grade students 

(ages 14-15) through authentic classroom pilots in an urban high-school in Turkey. The 

pilots took place in an optional Math course offered during school hours throughout a 

school semester. 13 pilot sessions of 40 minutes each were provided to 17 volunteering 

students; around 113 hours of student data is collected in total. During the pilots, the 

students used an online learning platform where they watched instructional videos (i.e., 

Instructional sections) and solved objective assessments to test their mastery (i.e., As-

sessment sections). A Math teacher participated in the course as a facilitator of the 

learning process – i.e., whenever the students needed her input, she got involved. The 

curriculum of the course was designed in collaboration with the course teacher. The 

data for each student was collected individually, using a laptop equipped with a camera. 

While the students were involved in learning activities on the online platform, we col-

lected two streams of videos: (1) videos of the student from the camera, to enable mon-

itoring of observable cues available in the individual’s face or upper body; and (2) stu-

dent desktop videos, to observe contextual information from the learning activity. We 

also recorded system interaction logs and whether students were participating in in-

structional or assessment activities. 

Data Labeling. Using the Human Expert Labeling Process (HELP) [12], detailed be-

low, we had five human experts from Turkey and five human experts from the United 

States with at least a B.S. degree in Psychology/Educational Psychology label the same 

portion of the student data collected from the pilots. Each group of human experts la-

beled around 14 hours of data collected from ten students in two sessions. The experts 

defined segments based on observed state changes (i.e., an expert defined segments 

based on identifying a change in affect rather than using pre-defined segments of pre-
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defined length) and provided labels with regards to affective states during learning. 

These experts labeled student data after receiving face-to-face, instructor-led training 

provided by the research team. The training involved a presentation explaining opera-

tional definitions of labels and providing examples, as well as a practice session with 

the labeling tool. Note that the training was not prescriptive in that we did not give 

directive instructors such as telling the experts that the student’s fist on their cheek 

indicates boredom. This is because annotating affective states is a highly subjective task 

and we expected the human experts to infer emotional states just as teachers would do 

in classrooms. This more subjective coding approach is similar to what is seen in 

BROMP [11], and distinct from FACS [13], which is more prescriptive. The research 

team provided the same training materials for operational definitions of these labels 

within both countries (translated), and attempted to use similar training procedures, 

though there remained some slight differences in the actual training process due to dif-

ferences between the experts and the settings where they were being trained. The defi-

nitions of emotional states provided to the human experts are given in Table 1. 

Table 1. Operational definitions of emotional states. 

Satisfied If a student is not having any emotional challenges during a learning task. 

This can include all positive emotional states of the student from being 

neutral to being excited during the learning task. 

Bored If the student is feeling bored during the learning task. 

Confused 

If the student is getting confused during the learning task – in some cases 

this state might include some other negative states such as frustration 

(which can be viewed as an increased level of confusion). 

 In addition to these emotional states, the experts also had two other labels: Can’t 

Decide (i.e., if the expert cannot decide on the final emotional state) and N/A (i.e., if the 

data cannot be labeled - e.g., there is no one in front of the camera). Using the HELP 

Labeling Tool (see Fig. 1 for a sample view), the experts annotated the data using all 

available cues, such as video and audio capture of the student, desktop recording with 

mouse cursor locations emphasized, and contextual logs from the device and content 

platform. Both of the human expert groups completed labeling on the same student data 

using the same labeling tool; the labeling itself took place at different times and loca-

tions. 

Human Experts’ Demographics. The demographics for the human experts in Turkey 

were rather different than the ones in the United States. The age-range was 20s-30s in 

the former group, whereas in the latter it ranged from 30s-60s. All the experts in Turkey 

were female whereas we had one male expert in the United States. All experts had a 

Psychology/Educational Psychology degree in both groups and some of them had ex-

perience as a classroom teacher. 
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Fig. 1. HELP Labeling Tool (sample view). 

2.3 Data Analysis 

Data Pre-processing. In order to obtain the inter-rater agreement measures, the labeled 

data was pre-processed as follows: First of all, we applied data aggregation (i.e., creat-

ing instances by sliding-windows) on the labeling outputs of all the experts. The label-

ing data provided by each expert were pre-processed and divided into instances, where 

for each 8-seconds sliding-window (with an overlap of 4-seconds), an emotional label 

was assigned by each expert. The section type information is taken into account while 

creating these windowed data, so that none of the instances contained both instructional 

and assessment activities. These instance labels were employed to calculate the inter-

rater agreement measures. 

To compute each affective state’s proportion labeled, we distilled a single label (per 

population of experts) for each time window, which served as a final ground truth label 

for each group of human experts. In order to do this, we applied majority voting across 

all five experts within each group. For each data instance, a majority label (i.e., label 

with at least three-out-of-five votes) was obtained. We also applied majority voting 

across the best three experts (i.e., three-out-of-five labelers with the highest consensus) 

within each group, to eliminate the possible influence of an outlier on final ground truth 

labels for each group. These final majority labels were utilized to train our supervised 

models for affect detection. 

Metrics for Analysis. We calculated the inter-rater agreement among multiple experts 

to investigate the effect of the socio-cultural background of human experts on the de-

gree of agreement achieved for the affective state labeling. For inter-rater agreement, 

we used consensus measures which are designed to estimate the degree of agreement 

among multiple raters [14, 15]. In this study, we used Krippendorff’s alpha [16], be-

cause it is both suitable for multiple raters and robust for missing rates: It provides a 

corrected consensus estimate by comparing the observed agreement to the expected 

agreement (i.e., the agreement that would be obtained by chance alone) [16]. As sum-

marized in [17], there is no gold standard on the interpretation of Krippendorff’s alpha 
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values, and different thresholds are utilized throughout the literature. However, [17] 

states that values above 0.4 are often considered to represent moderate agreement. 

Methods for Analysis. To investigate differences between the human experts from 

Turkey and the U.S., inter-rater agreement measures were calculated separately in sev-

eral ways. 

First, we calculated within-country agreements. When doing so, we considered both 

all five experts, and the best three experts of each group, to mitigate against poor results 

due to outlier experts. Note that “best” refers to the three experts having the highest 

consensus among all possible three-out-of-five combinations of experts within each 

group. For the pairwise agreement cases, agreement is computed for each pair of ex-

perts, and then averaged across all possible pairs within the corresponding set of ex-

perts. We calculated: 

 Inter-rater agreement of all five U.S. experts (“US-all-5”). 

 Pairwise agreement of all five U.S. experts (“US-all-5-pairwise”). 

 Inter-rater agreement of all five Turkey experts (“TR-all-5”). 

 Pairwise agreement of all five Turkey experts (“TR-all-5-pairwise”). 

 Inter-rater agreement of the best three U.S. experts, where “best” is calculated as the 

highest agreement between three raters (among all combinations of five raters) in 

the same country (“US-best-3”). 

 Pairwise agreement of the best three U.S. experts (“US-best-3-pairwise”). 

 Inter-rater agreement of the best three Turkey experts, where “best” is calculated as 

the highest agreement between three raters (among all combinations of five raters) 

in the same country (“TR-best-3”). 

 Pairwise agreement of the best three Turkey experts (“TR-best-3-pairwise”). 

 Next, we analyzed agreement involving two groups of experts, mixed between both 

countries, to see how well they agreed with each other, on the whole. Calculating 

mixed-country group agreements gives us an idea of what the result might be if a re-

search group hired a set of human experts with various backgrounds. We calculated: 

 Inter-rater agreement of all ten experts (“Both-all-10”). 

 Pairwise agreement of all ten experts (“Both-all-10-pairwise”). 

 Inter-rater agreement of the best three experts from the U.S. and the best three ex-

perts from Turkey (“Both-best-6”). 

 Pairwise agreement of the best three experts from the U.S. and the best three experts 

from Turkey (“Both-best-6-pairwise”). 

 Finally, we compared between experts in different countries to see how well they 

agreed with each other, solely in cross-country comparisons. Here, each U.S. expert is 

compared to each Turkey expert, and the results are averaged across all such pairs. We 

calculated: 

 Pairwise agreement of all ten experts, between cross-country pairs (“Intercountry-

all-10-pairwise”). 
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 Pairwise agreement of the best three experts from the U.S. and the best three experts 

from Turkey, between cross-country pairs (“Intercountry-best-6-pairwise”). 

 By conducting these comparisons, we aimed to understand how much agreement can 

be achieved within a culture, and how agreement would change when comparing ex-

perts from different cultures. Note that N/A labels are simply treated as missing values 

in all of our inter-rater agreement calculations, to avoid misleading higher agreements 

due to this relatively objective label for which most experts agree on. As a result, we 

computed inter-rater agreements for the other four labels (i.e., Satisfied, Bored, Con-

fused, Can’t Decide). 

In addition to examining the degree of agreement between experts, we also computed 

summary statistics on the overall prevalence of affective states labeled by each group, 

in order to see whether one group of experts generally identified specific affective states 

more than others (potentially indicating some degree of bias in observation among the 

U.S. experts, who were labeling students from a different country). We calculated these 

proportions for all the content taken together (i.e., Overall), as well as for each of the 

system’s two types of content (i.e., Instructional and Assessment), taken individually. 

These proportions were calculated on the final ground truths computed by majority 

voting of best three experts of each group separately, again to avoid the influence of an 

outlier within each group. Note that after this point, we are solely interested in the af-

fective states (i.e., Satisfied, Bored, Confused) so we no longer consider Can’t Decide 

final labels for either proportions or models of affective states. 

As a last step, we explored whether there were differences in the performance of 

affect detection models trained using final majority labels obtained by each group of 

expert labelers. In this study, we considered two modalities for affect detection as fol-

lows: (1) Appearance: upper-body information of students from the camera, (2) Context 

& Performance (C&P): interaction and performance logs of students from the online 

learning platform. For feature extraction, in order to obtain instance features for each 

modality, we utilized the same 8-seconds sliding window (with an overlap of 4-sec-

onds) approach that we used to derive the instance labels. For Appearance, the raw 

video data are segmented into instances and time series analysis methods were utilized 

to extract appearance features, consisting of motion and energy measures (e.g., trend of 

pose energy), robust statistical estimators (e.g., trimean) of head velocity, and fre-

quency domain features related to head position, pose, and facial expressions. More 

details of the Appearance modality can be found in our previous study [18] where we 

used the same appearance features in this study. For C&P, we extracted features for 

inferring affect from the raw user interaction logs collected from the content platform 

together with the user profile (e.g., gender), consisting of features related to time (e.g., 

video duration, time from beginning, time spent on attempts/questions, etc.), student 

performance (e.g., success/failure of attempts, percentage of attempts correct, etc.), at-

tempts made (trial number, number of attempts taken until success, etc.), hints (number 

of hints used on attempts/questions, etc.), and others (question number, etc.). Some of 

these extracted C&P features are adapted from the study [3] selecting the subset which 

are applicable to the content platform we used. More details of the C&P features em-

ployed in this study can be found in our previous study [19]. In total, we extracted 188 
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appearance and 24 C&P features per each instance, which are fed into separate classi-

fiers as feature vectors along with the ground truth labels. For both modalities, we 

trained Random Forest classifiers with 100 trees. For model training and testing, the 

labeled datasets (14 hours of data collected from ten students) are partitioned into train-

ing (80%) and test (20%) sets, stratifying to keep the distribution of each state and 

student similar within each group. We applied leave-one-subject-out cross-validation 

to prevent overfitting, where for each test student, the training samples of all other stu-

dents were used to construct subject-specific training sets. Due to the class imbalance 

problem, we employed 10-fold random sample selection to obtain balanced training 

sets. We compared the performance results of affect detection models trained on the 

same feature sets but different label sets (i.e., ground truths). In each case, we trained 

and tested on the final majority labels obtained from the best three experts from the 

U.S. versus the best three experts from Turkey. 

3 Experimental Results 

3.1 Results: Inter-Rater Agreement 

Inter-rater agreement values among the human experts for the several comparison sets 

given in Section 2.3.2 are outlined in Table 2. The results of within-country agreements 

with all five experts given in Table 2 show that when comparing between the experts 

from the U.S. and Turkey as two separate groups, the experts from Turkey perform 

moderately better in terms of inter-rater reliability. The results for within-country agree-

ments with the best three experts (discarding the worst, potentially outlier, experts), 

given in Table 2, is similar although the difference between the two groups decreases. 

Note that when eliminating the outliers, the improvement we achieve is higher for the 

U.S. experts than the experts from Turkey, which suggests that the outliers had a more 

negative impact on the agreement for the U.S. experts.  

At first, the within-country results with the best three experts given in Table 2 might 

look promising, suggesting that the better raters among the U.S. experts perform almost 

as well as the Turkey experts. However, the mixed-country results given in Table 2 

show that when we combine these two groups and obtain a mixed-cultural set, the 

agreement scores go down, even for the best experts within each group.  

Finally, we can look at how closely the two groups agree directly with each other, 

by comparing pairs of experts (one from the U.S. and one from Turkey), shown as the 

cross-country results in Table 2. These results indicate that pair-wise cross-cultural 

comparison has the lowest degree of agreement of any of the comparisons conducted 

here, reaching a value of 0.4 or lower. Such results might signify that although the 

experts from the same country could agree with each reasonably well, their agreement 

drops when comparing their labels with another group from a different country. In a 

way, this could be the worst possible result for using experts from a different country 

than participants – it suggests that experts may be systematically biased in their evalu-

ations of student affect, agreeing on a label that may not actually reflect the student’s 

affect. We investigate this possibility in greater depth in the following sections. 
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Table 2. Inter-rater agreement (Krippendorff’s Alpha) measures among human experts from the 

United States (US) and Turkey (TR). 

Human Expert 

Comparison Sets 

Krippendorff’s 

Alpha 

Human Expert 

Comparison Sets 

Krippendorff’s 

Alpha 

Within-country (all-5)  Mixed-country  

US-all-5 0.469 Both-all-10 0.452 

US-all-5-pairwise 0.472 Both-all-10-pairwise 0.446 

TR-all-5 0.578 Both-best-6 0.483 

TR-all-5-pairwise 0.585 Both-best-6-pairwise 0.478 

Within-country (best-3)  Cross-country  

US-best-3 0.560 Intercountry-all-10-pairwise 0.379 

US-best-3-pairwise  0.564 Intercountry-best-6-pairwise 0.400 

TR-best-3 0.617   

TR-best-3-pairwise  0.626   

3.2 Results: Overall Proportions of Affect 

There are also differences in the proportions of labels provided by human experts in the 

U.S. versus Turkey, as shown in Fig. 2. As Fig. 2 demonstrates, although both of the 

groups labeled Confused at a similar frequency (18.0% vs. 18.7%), the experts in the 

U.S. thought that students were Satisfied almost twice more frequently as the experts 

in Turkey (55.5% vs. 29.2%). For Instructional content, the difference in the Satisfied 

state distribution is even greater (49.1% vs. 18.1%). Similarly, for the Assessment con-

tent, although the Turkey experts thought that students were Bored fairly frequently 

(27.7%), the U.S. experts considered those students to be Bored substantially less fre-

quently (7.7%). The U.S. experts instead annotated the majority of these students as 

Satisfied (60.5%) while solving questions. Note that neither group of experts identified 

students as Confused during the Instructional activities. 

 

Fig. 2. Students’ emotional-state distributions for different section types (i.e., Instructional, As-

sessment, and Overall) as labeled by the human experts from the U.S. and Turkey. 

3.3 Results: Performance of Affect Detection Models 

Finally, we compared whether using ground truth labels from same-culture expert la-

belers (from Turkey) produced better affect detectors than ground truth labels from 
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cross-culture expert labelers (from U.S.). For each modality (i.e., Appr: Appearance 

and C&P: Context & Performance), we trained separate models for different activities 

(i.e., Instructional and Assessment), and trained separate models for each group of ex-

perts: U.S. and Turkey. The generic (i.e., subject-independent) results for each of these 

two modalities (Appr and C&P) and activity types (Instructional and Assessment) are 

reported in Table 3, broken out by each affective state and by labeler background. We 

also report the average training set sizes (i.e., average of ten students, where balanced 

training sets differ for each student due to the leave-one-subject-out methodology) and 

total test set sizes (i.e., total of ten students’ unbalanced test sets). 

Note that no students were labeled as Confused during Instructional activities, so 

our analysis of the Instructional models consists solely of examples of Satisfied and 

Bored. For Assessment models, although we have relatively balanced classes among 

the Turkey experts, the U.S. experts seldom labeled students as Bored (7.7%), too small 

a sample to develop detectors on. As our goal here is to compare models between same-

culture and cross-culture labels, we trained our Assessment models to detect Satisfied 

and Confused states only, for both groups of experts. 

In Table 3, we report mean F1-scores which are computed by weighted averaging 

over all folds (10-fold for random selection; times ten for all students), where weights 

are the test counts of each model. These mean F1-scores are computed for each class 

(i.e., affective state) and for overall classification performance. In addition to F1, mean 

AUC (i.e., the area under the ROC curve) values are reported in Table 4, which are 

again computed by weighted averaging over all folds. We report single AUC value for 

each model, which reflects the overall performance of binary classifiers. 

Table 3. Affect detection classifier results (F1-scores) for separate modalities (Appr: Appear-

ance, C&P: Context & Performance) and different section types (Instr: Instructional, Assess: 

Assessment) trained using labels by experts from the United States and Turkey. 

Section 

Type 

Class Labels: Experts from the U.S. Labels: Experts from Turkey 

Avg. 

Train 

Count 

Total 

Test 

Count 

Appr 

F1 

C&P  

F1 

Avg. 

Train 

Count 

Total 

Test 

Count 

Appr 

F1 

C&P 

F1 

Instr. Satisfied 888 265 0.62 0.58 336 94 0.41 0.42 

Bored 888 271 0.67 0.59 336 425 0.86 0.88 
OVERALL 1776 536 0.65 0.58 672 519 0.77 0.80 

Assess. Satisfied 787 416 0.59 0.80 769 243 0.43 0.73 

Confused 787 219 0.45 0.63 769 215 0.57 0.66 
OVERALL 1574 635 0.53 0.74 1538 458 0.51 0.70 

 

 As shown in Table 3, there are notable differences in the affect detection perfor-

mances when models are trained using labels provided by experts in the U.S. versus 

Turkey. For Instructional models, both modalities had higher F1-scores for the overall 

performance when labels provided by Turkey experts are utilized instead of the U.S. 

experts (US vs. TR: 0.65 vs. 0.77 for Appr, 0.58 vs. 0.80 for C&P). This difference is 

particularly strong for the case of detecting Bored states (US vs. TR: 0.67 vs. 0.86 for 

Appr, 0.59 vs. 0.88 for C&P). Note that we achieved better F1-scores even with the 

lower number of training samples provided by Turkey experts (672) compared to the 
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U.S. experts (1776). For Assessment models, where we have comparable training set 

sizes (1574 vs. 1538), although both modalities performed slightly better overall when 

trained on expert labels from the U.S. compared to Turkey (US vs. TR: 0.53 vs. 0.51 

for Appr, 0.74 vs. 0.70 for C&P), we observed that Confused state had higher F1-scores 

when expert labels were obtained from Turkey rather than U.S. (US vs. TR: 0.45 vs. 

0.57 for Appr, 0.63 vs. 0.66 for C&P). In Table 4, we observed very similar trends with 

AUC values as we had with F1-scores for the overall performance results of models 

trained on expert labels from Turkey versus the U.S. 

Table 4. Affect detection classifier results (AUC values) for separate modalities (Appr: Appear-

ance, C&P: Context & Performance) and different section types (Instr: Instructional, Assess: 

Assessment) trained using labels by experts from the United States and Turkey. 

Section 

Type 

Labels: Experts from the U.S. Labels: Experts from Turkey 

Avg. 

Train 

Count 

Total 

Test 

Count 

Appr 

AUC 

C&P  

AUC 

Avg. 

Train 

Count 

Total 

Test 

Count 

Appr 

AUC 

C&P 

AUC 

Instr. 1776 536 0.62 0.57 672 519 0.66 0.76 

Assess. 1574 635 0.54 0.81 1538 458 0.53 0.78 

4 Discussion And Conclusions 

In this study, we explored whether having expert labelers from the same country as the 

students would lead to more reliable affective state labels than having experts from a 

different country. Our findings show that experts from Turkey obtained moderately 

better inter-rater agreement than the experts from the U.S. These results are perhaps 

unsurprising, given that the original data collected was on learners from Turkey, and 

experts from Turkey have shared culture (common values and perceptions; modes of 

expressing affect) and context (similar school experience, shared environment). More 

importantly, even though the U.S. experts agree with each other, they agree fairly 

poorly with the Turkey experts, even when only the best U.S. experts are taken into 

account. Again, this finding may not be surprising. However, these findings have not 

been previously demonstrated in a quantitative comparison, and cross-cultural affect 

coding is common in the field of AIED. These results argue that the cross-cultural affect 

coding should be done with extreme caution. 

On the other hand, it should be noted that these two expert groups had slightly dif-

ferent training due to being trained in a different setting and language; the two groups 

were also somewhat demographically different in terms of their age. This is the type of 

limitation that is difficult to surmount when comparing experts from different popula-

tions, but it suggests that replication with larger samples is probably warranted.  

This difference between what the Turkey experts and U.S. experts saw, within the 

same student data, can also be seen in the differences between the distributions of af-

fective states obtained from the two groups. In particular, these two distinct expert 

groups interpreted and assigned Bored and Satisfied states rather differently, with U.S. 
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experts assigning a label of Satisfied much more frequently and Bored much less fre-

quently. This may be due in part to the type of affect commonly experienced during 

online learning. Students’ emotions may be less intense in a 1:1 learning using an online 

content platform (i.e., watching instructional videos or solving assessment questions) 

than in other contexts [20]. Qualitatively, several experts in both Turkey and the U.S. 

commented that the students were often very close to the neutral state. To differentiate 

between student emotional states, the human expert might need to understand subtle 

signals of shifts in emotion. This issue might explain the differences in the state distri-

butions: There could be a cultural impact in interpreting such ambiguities in close-to-

neutral states of students. Alternatively, U.S. experts may simply have been unable to 

recognize some of the key signs of boredom among the students from Turkey. This 

possible difference or limitation of U.S. experts in understanding subtle differences be-

tween emotions might also explain the higher F1-scores obtained for Bored and Con-

fused states of students from Turkey when experts also from Turkey are utilized to 

provide somewhat more reliable ground truth labels for training affect detection mod-

els. Although we have limited data in these experiments, considering the challenges of 

affect detection both for human experts and machines, the differences in model results 

suggest that it is important to obtain labels as reliable as possible to achieve high-per-

forming detection of student affect. These results might also suggest that although the 

best three experts from the same country could agree with each other reasonably well, 

we should be careful when using human experts from a different country than partici-

pants as this can impact the final model results. 

These findings argue in general, then, that inter-country labeling of student affect is 

non-ideal. This finding raises some questions for going forward, however. First and 

foremost is, how different can labelers be from students and still produce acceptable 

labels? Living in the same country is an easy shorthand for belonging to the same cul-

ture, but culture and country do not perfectly coincide. Could a Canadian reliably label 

American data? Could a New Yorker reliably label a Texan’s affect? And how long 

must someone have lived in the same country as the subject contributing data, to be 

reliable? What if they are married to a member of the target population? These ques-

tions are difficult to answer, but essential if we are to fully leverage this type of finding 

for data collection for affective computing research. One suggested take-away message 

from this research is that cross-national or cross-cultural expert labelers should be vet-

ted for inter-rater agreement very carefully (a practice recommended in [11]), but hav-

ing said that, similar precautions should be taken with any set of experts.  

It has been a matter of debate within the field for decades whether it is wise to con-

duct affect labeling cross-culturally (for example, [9] argues in favor and [11] against). 

Our conclusion indicates that if a researcher’s goal is to obtain high-quality labels of 

student affect, whether for use in affect detection or analysis on their own, it is probably 

not ideal to simply take a convenience sample of expert labelers who do not belong to 

the same population as the research subjects. Ultimately, AIED models and interven-

tions based on those models have the highest chance of being effective if they are based 

on more reliable data. 
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