
Assessing the Potential and Limits of Large Language
Models in Qualitative Coding

Xiner Liu1[0009-0004-3796-2251], Jiayi Zhang1 [0000-0002-7334-4256], Amanda Barany1[0000-0003-

2239-2271], Maciej Pankiewicz1[0000-0002-6945-0523], and Ryan S. Baker1[0000-0002-3051-3232]

1 University of Pennsylvania, Philadelphia, PA 19104, USA
xiner@upenn.edu

Abstract. This paper examines the advantages and limitations of conducting au-
tomated coding of virtual tutoring session transcripts using the GPT-4 Turbo
model via the OpenAI API. We compare three coding methods: (1) zero-shot,
which relies solely on construct definitions; (2) few-shot, which includes anno-
tated examples; and (3) coding with context, which provides GPT-4 with sur-
rounding dialogue and study context. We used these approaches to code ten con-
structs from an existing codebook. We then had a set of experienced qualitative
researchers rate the set of constructs across multiple dimensions. The results
show that while zero-shot coding is effective for constructs with clear definitions,
it tends to miss cases and struggles with constructs requiring contextual under-
standing. Few-shot coding works well for constructs that are seen as objective by
experts, and those for which experts feel examples are needed to fully understand.
However, it tends to overgeneralize based on the examples included in the
prompt. Coding with context is particularly effective for constructs that often ap-
pear as part of sequences, but can also lead to the model coding more based on
the context rather than the current line. This investigation highlights the potential
of GPT-4 Turbo for efficient auto-coding of large datasets but emphasizes that
specific prompting decisions impact quality and that the optimal decisions vary
based on the characteristics of what is being coded.

Keywords: Large Language Model, GPT, Qualitative Coding, Automated Cod-
ing

1 Introduction

With the recent large language model (LLM) advancements in technology for natural
language processing, an increasing number of studies are exploring the use of these
models for qualitative coding (e.g., [20, 23]). Qualitative data coding using LLMs po-
tentially offers a more cost-effective and time-efficient way of analyzing text. For ex-
ample, GPT (Generative pre-trained transformers), a LLM that can be interacted with
through prompts to ChatGPT, has been increasingly employed for this purpose, demon-
strating promising results in coding various constructs (e.g., [15]). In these cases,
prompts are given to GPT on how and what to code, with definitions and examples.

2

However, questions have been raised as to how accurate and reliable natural lan-
guage processing models can be for coding qualitatively [10]. Even given the evidence
that GPT can code accurately [5], it still remains unclear what constructs it is best able
to code. Does its ability to code vary across constructs, and how does the complexity
of a construct influence its ability? To provide some evidence on these questions, we
compared GPT-4’s ability to code ten constructs using three types of prompts: zero-
shot prompting, few-shot prompting, and prompts with context. To understand why the
ability to code might vary, we identified five dimensions (i.e., clarity, concreteness,
objectivity, granularity, and specificity) to evaluate the attributes of a construct. We
asked experts to rate the ten constructs using the five dimensions and used the ratings,
along with a measure that indicates the usefulness of examples, to examine how these
dimensions of a coding category might explain the variability in ChatGPT’s ability to
code using the three prompting methods.

2 Related Work

2.1 Qualitative Coding

Qualitative coding, as a critical step in qualitative research, involves systematically la-
beling, categorizing, and organizing data into themes, concepts, or patterns to identify
recurring ideas or concepts within the data [18]. Researchers assign labels or "codes"
to segments of data that represent meaningful units of information. By analyzing and
drawing connections among the codes, researchers are able to explore and interpret the
underlying meanings and patterns [18].

Codes can be generated inductively, where researchers create codes based on the
data itself without preconceived ideas or theoretical frameworks, or deductively (top-
down), where researchers rely on existing theories to define and operationalize codes
[14]. The two methods are often used iteratively to ensure that the codes are grounded
in both the data and theories [19]. In deductive coding, a predefined codebook is often
used by raters, deciding on the presence or absence of a code within a segment of text.

As noted in [19], qualitative coding can be a time-consuming and labor-intensive
process, as researchers need to manually examine each text segment and label the codes.
For years, researchers have attempted to find ways to qualitatively code automatically
or partially-automatically [4, 8]. More recently, an increasing number of studies have
explored the use of ChatGPT, to facilitate the coding process. In these studies, prompts
are given to ChatGPT to tell it how to code, along with definitions and, in some cases,
examples. For example, in [24], ChatGPT (GPT-4) was instructed to code the topic and
valence of press releases (e.g., economic positive, economic negative, medical posi-
tive). Similarly, Chew et al. [5] used GPT-3.5 to apply codes to four publicly available
datasets collected from reports, news articles, blog posts, and social media. In the field
of education, [23] instructed ChatGPT (GPT-3) to code the types of students’ help-
seeking and [12] used ChatGPT to rate the quality of peer feedback. These studies found
GPT promising for conducting coding and achieving good agreement to human-coded
labels. However, some of these studies have found that LLMs’ success in coding varies

 3

across constructs/coding categories and that LLMs perform worse for some constructs
compared to more traditional NLP models.

2.2 GPT and Prompt Engineering

Large language models (LLMs) are advanced artificial intelligence systems designed
to generate human-like text based on patterns and structures learned from large amounts
of training data [3]. GPT as a generative AI built based on large language models has
demonstrated considerable ability in processing and generating natural language.

When using GPT, a prompt, which often includes a set of instructions, is used to
describe a task, provide context, define guidelines, and/or specify a desired output [16].
Prompt engineering - the process of refining and improving prompts - may be employed
to optimize the results. Several prompting methods have been experimented with and
used to instruct models to improve outcomes, differentiated based on the specificity of
instruction and the use of examples. For example, zero-shot prompting involves giving
instructions for a task without any labeled examples, whereas one-shot or few-shot
prompting involves using labeled data that provide examples for the model to learn
from in addition to instructions. In [23], when GPT was instructed to code types of
help-seeking, prompts that included examples (one-shot and few-shot) had higher
agreement with experts’ coding than prompts with just a code and description (zero-
shot). Similar results were found in [3] and [17]. The selection of examples (e.g., in-
cluding both positive and negative examples) and the ordering of the examples have
also been examined in relation to model performance [13]. In addition to the use of
examples, prompt engineering research has also explored how the structure of prompts
[22], the inclusion of context [11] such as describing GPT’s role in performing the task,
and requiring GPT to justify its coding decisions [9] influence model performance.

3 Method & Results

3.1 Context

The data used in our study consists of deidentified transcripts from four 60-minute vir-
tual tutoring sessions with 9th-grade students from high-poverty schools in the United
States during the 2022-2023 academic year, focusing on Algebra I, obtained from [2].
The high dosage tutoring sessions were facilitated by the Saga Education platform. In
these sessions, trained tutors offered personalized, small-group support for mathematics
learning, a type of learning support that has been shown to be beneficial for students'
math learning, achievement, and grades (e.g., [6, 7]). Each line of the transcript is an-
notated with the speaker and timestamp.

3.2 Codebook Development

To study GPT’s coding capabilities, we obtained a prior codebook developed by [2] for
this data set. This prior study compared four different approaches to codebook

4

development: fully manual (human only), fully automated (ChatGPT only), and two
hybrid approaches that integrate ChatGPT at different stages of the development pro-
cess. By using an existing codebook not developed by the researchers in the current
study, we aim to mitigate potential biases, such as being able to better craft the prompts
that could arise from familiarity with the codebook's creation process.

For our analysis, we chose the hybrid codebook that was first crafted by humans and
then refined using GPT (Human → ChatGPT). This codebook was selected because it
offers the widest range of thematic meanings among those developed in the previous
study. This broad range of themes allows for a more comprehensive examination of
GPT's capabilities in coding various constructs, which is important for understanding
both the strengths and limitations of this automated coding tool in qualitative research.

In the study by [2], two researchers who were not involved in developing the code-
book were randomly assigned to code the tutoring lesson transcripts using the Human
→ ChatGPT codebook. However, even after two rounds of coding, only four out of ten
codes achieved a kappa of 0.6 or above. Therefore, in our study, two (new) human
researchers independently coded the transcript lines based on the definitions of the con-
structs outlined in the codebook (see Table 1). The kappa values from their first round
of coding were inconsistent, ranging from 0.24 to 0.87, which is comparable to the
kappa values obtained in the second round of coding in [2]’s study using the same
codebook. Since this human-coded data did not achieve sufficient agreement, the two
researchers in our study then discussed any coding disagreements to achieve consensus
and establish a single categorization for each transcript line [19].

Table 1. Codebook used for GPT coding capabilities assessment

Construct Definitions and examples

Greetings
(κ = 0.70)

Def: Lines unrelated to learning, useful for rapport. Lines during the start or
mid-session as "Engagement Checks."
Ex: "What's good, [Redacted]?"

Direct
instruction
(κ = 0.24)

Def: Providing information or demonstrating methods without immediate
student participation.
• Definitions/Explanations: Stating mathematical rules or properties.
• Demonstrating Steps: Giving instructions of how to solve a problem.
Ex: "We got twelve equals one over x minus five."

Guided practice
(κ = 0.35)

Def: Engaging students in problem-solving with support. Instructions in-
clude explanations, illustrations, reminders, and invites understanding.
Ex: "Do that and then I want to see if you can solve from there."

Questioning
(κ = 0.87)

Def: Prompting students to think, respond, or elaborate.
• Recall & Comprehension: Asking students to remember or use something
previously learned.
• Higher Order Thinking: Questions that push students to analyze, evaluate,
or plan next steps.
Ex: "Twelve times x gives you what?"

 5

Connect prior
knowledge
(κ = 0.45)

Def: Linking current topics to previously learned concepts for cohesive un-
derstanding.
Ex: "What kind of math is a fraction?"

Clarification
(κ = 0.72)

Def: Reiterating or paraphrasing for clearer understanding, helping move
from abstract to concrete thinking.
Ex: "Anytime we multiply, we always multiply what's in the denominator."

Feedback
(κ = 0.66)

Def: Offering constructive comments on student's performance or under-
standing.
• Positive Reinforcement: Confirming correct understanding or steps or of-
fering words of encouragement or praise to motivate or acknowledge effort.
• Corrective: Pointing out error, with or without explicitly giving correction.
• Yes, and: Acknowledging student understanding and extending it.
Ex: "The first one is right."

Engagement
checks
(κ = 0.48)

Def: Actively seeking signs of students' attention and participation.
• Direct Check: Directly asking or observing the student's involvement.
• Engagement Probes: Using strategies to pull students back into the lesson.
Ex: "You working or you phased out?"

Software/
tool use
(κ = 0.45)

Def: Reference to or assistance with using the tutoring software itself.
Ex: "Touch screen you can pinch and move it around."

Session logistics
(κ = 0.33)

Def: Addressing or organizing the structural aspects of the session. Indicat-
ing goals and tasks. Could be at the start, during, and end of session.
Ex: "Try out number nine."

* "κ" measures kappa between two human coders during the first round of coding

3.3 Coding Data with GPT

We then proceeded to code the data using GPT-4 Turbo, which is accessible via an
application programming interface (API) provided by OpenAI. For this research, we
used the model version gpt-4-Turbo-2024-04-09, the most recent version at the time of
writing. This version has an updated knowledge cutoff of April 2023, and a context
window of 128,000 tokens. The cost structure is $0.01 per thousand tokens for input,
which is one-third the cost of the original GPT-4 model, and $0.03 per thousand tokens
for output, which is half the cost for output tokens compared to the original GPT-4
model. We used the default settings for hyperparameters, except for setting the temper-
ature hyperparameter to 0 to ensure the consistency of the output.

When coding the data, we asked GPT to produce binary labels: 0 or 1. However, in
rare instances where transcriptions were poor, GPT produced non-binary responses
(e.g., "Sure, please provide the line you'd like to code"). We treated any response from
GPT that did not provide binary labels as being incorrect, regardless of the ground truth
value, since these responses would not be usable by a coder going forward.

Due to the stochastic nature of GPT models, which can result in variable outputs, we
ran the coding process three times to enhance the accuracy and thoroughness of our

6

evaluation for each coding approach. We then computed the average values for Kappa
(κ), precision, and recall across all three iterations to assess GPT's performance. Given
the emphasis on analyzing tutors' teaching methodologies, we excluded lines spoken
by students from the model evaluation process. This process resulted in a dataset con-
sisting of 990 lines. For the third method, which also sends prior lines of data as context,
we included student lines, but asked GPT to reference them instead of code them.

Method 1: Coding with Zero-shot Prompting. We first coded the data using zero-
shot prompting. This method involves taking each construct one at a time, and then
presenting the GPT-4 Turbo model with the definition of the current construct, followed
by directly asking it to code each line in the full dataset using the following prompt:

Please review the provided text and code it based on the construct: {con-
struct}. The definition of this construct is {definition}. After reviewing the
text, assign a code of '1' if you believe the text exemplifies {construct}, or a
'0' if it does not. Your response should only be '1' or '0'.

This prompt was sent as a system message to the Chat Completions API endpoint,
followed by the specific line of data that GPT should code sent as a user message. After
coding all 10 constructs, we calculated the performance metrics for each (See Table 2).

Table 2. Performance metrics for the zero-shot prompting

Construct κ Precision Recall F1 Shaffer’s Rho

Greetings 0.79 0.69 0.96 0.80 <0.01

Direct instruction 0.11 1.00 0.06 0.12 1.00

Guided practice 0.16 1.00 0.11 0.19 1.00

Questioning 0.91 0.91 0.93 0.92 <0.01

Connect prior knowledge 0.18 1.00 0.10 0.19 1.00

Clarification 0.30 0.70 0.20 0.31 1.00

Feedback 0.27 0.40 0.24 0.30 1.00

Engagement checks 0.45 0.66 0.37 0.47 1.00

Software 0.25 0.67 0.15 0.25 1.00

Session logistics 0.15 1.00 0.09 0.16 1.00

* Constructs with kappa values greater than 0.7 are bolded

Review of Mis-coded Cases. We then analyzed misclassified cases in order to better
understand GPT’s decision-making process in coding and its limitations. Upon review,
we noticed that GPT's zero-shot coding approach is very conservative and tends to ex-
pect direct matches to the definitions in the codebook. For instance, for the construct
Direct Instruction, GPT coded "So we got X minus three equals six" as 1, but coded
"You want to get another six" as 0. This is likely because the instruction in the second

 7

case is more implied and conversational. This issue is also reflected in the higher pre-
cision scores compared to recall for eight out of the 10 constructs. This suggests that
while GPT (zero-shot) is usually correct when it identifies a code, it often misses rele-
vant instances that are less clear-cut. This highlights the importance of providing clear
and comprehensive definitions in the codebook for a zero-shot approach, as this is key
for GPT to perform accurately in qualitative coding.

Secondly, we recognized that GPT (zero-shot) struggles with constructs requiring
contextual understanding. For example, it coded the line “How you doing over there,
[Redacted]?” as 1 for Greetings. However, this line occurred in the middle of a class
session, which makes it an instance of Engagement Checks rather than Greetings. Sim-
ilarly, GPT coded every instance of “Perfect” as 1 for Feedback, even in cases where
the instructor might be using “Perfect” as a filler word without offering actual feedback
or encouragement. Additionally, GPT does not perform well at coding constructs that
span multiple related lines of the same dialogue. For example, for the construct Feed-
back, human coders identified the consecutive lines “No” and “We're not going to mul-
tiply here” as Feedback (1). However, GPT only coded the second line as 0. This indi-
cates that for coding highly conversational data or constructs that require understanding
context across multiple lines, the context-minimal zero-shot approach may not be ideal.

Method 2: Coding with Few-shot Prompting
We then coded the data using few-shot prompting. This approach uses the same prompt
as the zero-shot method but now includes annotated examples with explanations before
the line to be coded. We opted for annotated examples (instead of simply providing
example text with no explanation) to provide explicit guidance on how the constructs
should be interpreted and applied, which might improve the model’s accuracy in iden-
tifying and classifying relevant content as well as the edge cases. Below are three an-
notated examples for the construct Direct Instruction:

(1) "Yeah, so track five on both sides first" because it specifies an action to
be taken to solve a problem (2) "We got twelve equals one over x minus five"
because it guides the student through a step in the process of solving an
equation (3) "Remember, remember we're trying to get x by itself." because
it provides guidance on what the focus should be during the task.

This approach’s performance when applied to the coding of the 10 constructs is
shown in Table 3.

Table 3. Performance metrics for the few-shot prompting

Construct κ Precision Recall F1 Shaffer’s Rho

Greetings 0.50 0.37 0.85 0.51 1.00

Direct instruction 0.79 0.95 0.71 0.81 <0.01

Guided practice 0.55 0.56 0.83 0.67 0.32

Questioning 0.89 0.85 0.97 0.91 <0.01

8

Connect prior knowledge 0.38 0.27 0.94 0.42 1.00

Clarification 0.56 0.46 0.90 0.60 0.37

Feedback 0.26 0.25 0.35 0.30 1.00

Engagement checks 0.82 0.80 0.86 0.83 <0.01

Software 0.71 0.67 0.77 0.71 0.07

Session logistics 0.85 0.80 0.91 0.85 <0.01

* Constructs with kappa values greater than 0.7 are bolded

Review of Mis-coded Cases. Upon reviewing the misclassified cases, we observed that
with more examples, the few-shot approach is generally able to identify when each
construct appears with the exception of Feedback. However, it tends to overgeneralize
based on the examples included in the prompt and incorrectly codes many irrelevant
instances as 1. For example, when the interjection "All right, fellas" was included as an
example for Greetings, GPT overgeneralized part of that phrase. As a result, 23
instances of "All right" were misclassified as Greetings, even when it was used in an
adverbial/adjectival form (i.e., "All right, let's look at number one."). When "All right,
fellas" was removed as an example, misclassification dropped significantly. A similar
overgeneralization issue arose with the Feedback construct, where GPT incorrectly
coded 10 out of 11 instances that contained only the word "No" as containing Feedback
after being given the following example: "No, not quite one x because you divided the
negative three by three but did you divide the x by x?" This issue is also reflected in
recall scores, which increased for all constructs compared to the zero-shot approach,
while precision decreased for all but one construct. The findings highlight the
importance of selecting examples that minimize the risk of overgeneralization, and
reviewing results in detail to identify unanticipated cases where they occur.

Method 3: Coding with context
For our third approach, we added context to the coding prompt in addition to the con-
struct definition and annotated examples used in the second method. We implemented
this approach for two reasons. First, some sentences in the transcription were split
across multiple lines (e.g., when participants interrupted each other), and this approach
allows GPT to reference earlier parts of a sentence if needed. Second, some construct
definitions in the codebook specify when they are likely to occur during the tutoring
session (e.g., Greetings often occur at the start, Engagement Checks might occur mid-
session), and including prior lines (if they are present) might help GPT identify the
location of the line. Contextual information consisted of (1) a summary background of
the study covering how the data was collected, the subjects taught, and the recording of
transcripts; (2) the three lines preceding the current line (if not coding the first three
lines), and (3) each line's timestamp and speaker (instructor or student). The decision
to include three lines was based on a preliminary analysis of 20 randomly selected lines.
For example, when coding the fourth line in the second tutoring session, the model will
receive the following contextual information along with the study background:

 9

CONTEXT (3 lines before the text you should code. Use this for context under-
standing, but do not code this part):
00:07 - [Instructor]: "Okay, so you should remember this from last time."
00:12 - [Instructor]: "We're gonna go ahead and use our grouping method."
00:17 - [Instructor]: "So factor these equations using our grouping method."

The performance metrics for this approach are recorded in Table 4.

Table 4. Performance metrics for coding with context

Construct κ Precision Recall F1 Shaffer’s Rho

Greetings 0.74 0.82 0.69 0.75 0.01

Direct instruction 0.62 0.56 0.89 0.69 0.10

Guided practice 0.86 0.91 0.87 0.89 <0.01

Questioning 0.60 0.53 0.98 0.69 0.22

Connect prior knowledge 0.78 0.78 0.83 0.81 <0.01

Clarification 0.30 0.23 0.87 0.37 1.00

Feedback 0.15 0.13 0.67 0.21 1.00

Engagement checks 0.53 0.48 0.68 0.56 1.00

Software 0.60 0.43 1.00 0.60 0.32

Session logistics 0.41 0.28 0.97 0.43 1.00

* Constructs with kappa values greater than 0.7 are bolded

Review of Mis-coded Cases. The context-based coding approach seems to work best for
constructs that typically involve repetition or continuation across consecutive lines,
such as Guided Practice and Connect Prior Knowledge. For these categories, isolated
lines (defined as lines coded as 1 with no other 1’s in the three rows above) appeared
only 29% and 26% of the time, respectively. Despite explicit instructions to GPT to use
the previous three lines as reference but not to code them, it still tends to code the cur-
rent lines based on the previous ones, which has resulted in many consecutive lines
coded as 1s for each construct. This creates a problem when the conversation topic
changes between prior lines and the coded line, such as in constructs that tend to appear
in isolation. For example, the Clarification construct has isolated lines 65% of the time,
and Session Logistics has isolated lines 60% of the time.

3.4 Evaluating Construct Complexity

Based on our previous experience in qualitative coding, we created a rubric of five
dimensions that we found useful for evaluating the complexity of constructs: clarity,
concreteness, objectivity, granularity, and specificity (See Table 5). These dimensions
guided our investigation into the relationship between construct complexity and GPT-
4 Turbo’s coding ability. The rubric and codebook of 10 constructs were distributed to
a group of researchers familiar with qualitative coding and analysis. Eleven researchers

10

reviewed the name and definition of each construct and rated them from 1 (lowest) to
5 (highest) for each dimension. Researchers were then presented with examples and
asked to rate their usefulness for improving their understanding of the constructs.

Table 5. The five dimensions used to evaluate construct complexity

Dimension Definition

Clarity
Clarity (as opposed to ambiguity) measures how well-defined and easily com-
prehensible a concept is, without ambiguity or confusion.

Concreteness
Concreteness (as opposed to abstractness) refers to the quality of being spe-
cific, tangible, and perceptible by the senses.

Objectivity
Objectivity (as opposed to subjectivity) means verifiable information based
on facts and evidence, whereas subjective means information or perspectives
based on feelings, opinions, or emotions.

Granularity
Granularity (as opposed to coarseness), refers to the extent to which a concept
involves finer, detailed elements.

Specificity
Specificity (as opposed to generality) measures the extent to which a con-
struct is distinct and can be clearly distinguished from other related concepts,
rather than being conflated with them/overlapping them.

For each construct, we computed the average of ratings on the five dimensions along
with the usefulness of examples (See Table 6).

 Table 6. Average scores of evaluated dimensions for each construct

Construct Best method Clarity Concreteness Objectivity Granularity Specificity Example

Greetings Zero-shot 4.64 4.18 3.45 3.82 3.45 3.64

Direct
instruction

Few-shot 3.73 3.64 2.82 3.73 3.09 4.45

Guided
practice

Coding with
context

3.64 3.55 2.82 2.91 3.27 3.64

Question-
ing

Zero-shot 4.82 4.45 4.45 4.27 4.27 3.64

Connect
prior
knowledge

Coding with
context

3.91 3.27 3.36 2.82 3.27 3.64

Clarifica-
tion

- 3.55 2.73 3.00 3.00 3.18 3.73

Feedback - 3.82 2.82 3.00 3.55 3.18 3.64

Engage-
ment
checks

Few-shot 3.64 3.18 2.73 3.36 3.18 4.55

 11

Software Few-shot 3.45 3.91 4.45 3.55 3.73 4.64

Session
Logistics

Few-shot 3.36 3.45 4.00 3.55 3.73 3.91

* The best coding method for each construct is selected if it has the highest κ among all three
methods and κ ≥ 0.75. Constructs with κ < 0.75 are still included in the correlation analysis.

Due to non-normality in the data, we used Spearman correlations to investigate the
relationship between each pair of dimensions to understand how different dimensions
relate to each other. Correlations were moderate, with an average Spearman correlation
coefficient of 0.36 (SD = 0.49). Notably, there was a very high correlation (0.87) be-
tween objectivity and specificity.

3.5 Agreement and Construct Complexity

We next calculate Spearman correlations between the average values for the dimen-
sions and the κ values achieved by GPT-4 Turbo in coding tasks for each of the three
methods (See Table 7). We chose this approach because the small sample size limits
the reliability and power of more complex statistical models. Additionally, multicollin-
earity among our dimensions makes it challenging to use regression-based methods
without introducing significant bias or instability in the estimates. Spearman correlation
coefficients, being non-parametric, do not assume a specific distribution of the data;
this is important because many of our measures were non-normal, making them suitable
for identifying monotonic relationships between the dimensions and the κ values.

We did not conduct post-hoc corrections for p-values because our significance test-
ing showed that none of the correlations were statistically significant even without post-
hoc correction. However, the Spearman correlation coefficients still provide suggestive
and interpretable insights that allow us to generate hypotheses about the strengths and
weaknesses of GPT as an automated coding tool.

Table 7. Summary of spearman correlation coefficients across different methods

Construct Clarity Concreteness Objectivity Granularity Specificity Example

Zero-shot 0.50 0.15 0.24 0.34 0.28 -

Few-shot -0.24 0.39 0.20 0.41 0.36 0.48

Coding with con-
text

0.40 0.55 -0.05 -0.12 0.17 -0.33

The positive coefficient of 0.50 for clarity and performance in zero-shot coding in-
dicates a direct and moderate positive relationship between the clarity of the content
and the κ score. This suggests that clearer and unambiguous definitions tend to improve
agreement between human and GPT in a zero-shot approach. Interestingly, this corre-
lation decreases for coding with context (0.40) and becomes negative for the few-shot
approach (-0.24). This suggests that GPT can identify patterns that humans struggle to

12

define but can recognize through examples. The zero-shot and few-shot approaches
achieve better performance for more granular constructs; in these cases, extra context
may not be useful (as the construct only needs one line due to its high granularity) and
serves as a distraction. Examples that humans found useful were associated with better
performance for the few-shot approach (0.48), but the reverse seemed to be true for
coding with context (-0.33). It is possible that the additional context could overwhelm
GPT, causing it to rely less on the examples and more on surrounding information.

4 Discussion and Conclusion

In this paper, we explored the potential of the GPT-4 Turbo model through the OpenAI
API for automated coding, using a codebook previously developed in partnership be-
tween a human and GPT [2]. The data consisted of transcripts from four 60-minute
virtual tutoring sessions with 9th grade students. To assess the complexity of constructs
in the codebook, we asked experts in qualitative coding to evaluate the constructs across
five identified dimensions. We then calculated the average of these dimensions and
correlated these averages to the κ scores from three coding approaches to evaluate the
strengths and weaknesses of GPT-4 Turbo for automated coding.

We employed three distinct methods to code the data: 1) zero-shot coding, which
presents only the construct definition to GPT and prompts it to code, (2) few-shot cod-
ing, which includes annotated examples along with the construct definition before
prompting GPT to code, and (3) coding with context, which provides GPT with some
context of the study and the preceding lines to aid in coding the current line. For eight
out of the 10 constructs, the GPT-4 Turbo achieved good agreement with human coders
(κ ≥0.70) for at least one of these prompt engineering approaches. This finding indicates
GPT-4 Turbo's general capability to accurately code a wide range of constructs. How-
ever, each method showed unique strengths and limitations, and not every method was
equally effective for all constructs.

We found that zero-shot prompting can achieve high performance for well-defined
constructs (e.g., Greetings and Questioning), which have straightforward and easily
comprehensible definitions. However, zero-shot coding tends to miss many cases, re-
sulting in lower recall than other methods. This approach also incorrectly codes some
cases due to a lack of contextual cues, similar to findings in [1, 21].

Few-shot coding is effective for constructs with high objectivity, such as Software
and Session Logistics, where the information is based on verifiable information or evi-
dence. It is also effective for constructs with low objectivity but highly useful examples,
such as Engagement Checks and Direct Instruction, where additional explanations help
clarify subjective information. However, incorporating annotated examples may lead
to overgeneralization in some cases, as the model might apply specific patterns from
the examples to unrelated contexts. In these instances, more straightforward zero-shot
prompting often performed better.

Coding with context is more accurate for constructs that require understanding of
surrounding context or temporal relationships between data lines. This method is useful
for constructs where lines that should be coded often appear consecutively, such as

 13

Guided Practice and Connect Prior Knowledge, where the preceding lines provide es-
sential context for accurate coding. However, this approach can cause problems when
context lines include different constructs than the current line being coded.

On the other hand, we observed that all methods struggled with constructs that have
a lower level of concreteness, such as Clarification and Feedback. These constructs are
more abstract and rely heavily on interpreting subtle cues and implicit information that
the model struggles to accurately code. Furthermore, all methods, similar to humans,
face difficulties with coding edge cases, particularly when additional context is needed
to make a decision, as noted in [9].

One limitation of using the GPT-4 Turbo model through the OpenAI API, compared
to ChatGPT, is that the API is less effective at explaining its decisions, identifying am-
biguities in definitions, and discussing inconsistencies in human coding. This is because
ChatGPT is specifically fine-tuned for conversation and interaction, which makes it
better suited for these tasks. Examples of this can also be found in our prior work [2,
24]. However, using the API for qualitative coding has significant advantages in terms
of efficiency. It is highly automated; once the prompt is defined and the chat completion
endpoint is set up, it can automatically code all lines in the dataset. This eliminates the
need to copy and paste or send prompts repeatedly to the chat window, making it a
much more efficient approach when dealing with large datasets. Additionally, it is much
easier to recode the data by API if the prompt needs to be updated and also allows
researchers to modify the default hyperparameter settings (such as temperature) to
achieve more consistent results.

Overall, this study suggests that GPT-4 Turbo can be useful for qualitative coding
in Quantitative Ethnographic research, but that there remains some engineering work
in doing so optimally. A current limitation of the work is that we only tested using one
dataset and one codebook, so findings may not be generalizable to other research con-
texts. Future research should test this approach on other constructs and datasets to de-
termine if different patterns or insights emerge. By systematically exploring which
types of constructs GPT can code more effectively identifying those that present chal-
lenges, we aim to develop more reliable coding methodologies across different qualita-
tive research contexts. Ultimately, this research seeks to harness the full potential of
GPT for qualitative coding, turning it into a reliable tool that reduces the time research-
ers spend on coding without compromising quality.

Acknowledgments. We extend thanks to the Learning Engineering Virtual Institute Engagement
Hub project for facilitating access to tutoring datasets from Saga Education.

References

1. Amarasinghe, I., Marques, F., Ortiz-Beltrán, A., Hernández-Leo, D.: Generative pre-trained
transformers for coding text data? An analysis with classroom orchestration data. In: Euro-
pean Conference on Technology Enhanced Learning, pp. 32-43 (2023).

2. Barany, A., Nasiar, N., … Baker, R.S.: ChatGPT for education research: Exploring the po-
tential of large language models for qualitative codebook development. In: Proceedings of
the 25th International Conference on Artificial Intelligence in Education (in press).

14

3. Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Amodei, D.:
Language models are few-shot learners. arXiv preprint arXiv:2005.14165 (2020).

4. Cai, Z., Siebert-Evenstone, A., Eagan, B., Shaffer, D. W., Hu, X., Graesser, A. C.: nCoder+:
a semantic tool for improving recall of nCoder coding. In: Eagan, B., Misfeldt, M., Siebert-
Evenstone, A. (eds.) Advances in Quantitative Ethnography. ICQE 2019. Communications
in Computer and Information Science, vol. 1112. Springer (2019).

5. Chew, R., Bollenbacher, J., Wenger, M., Speer, J., Kim, A.: LLM-assisted content analysis:
Using large language models to support deductive coding. arXiv:2306.14924 (2023).

6. Cook, P. J.: Not too late: Improving academic outcomes for disadvantaged youth. North-
western University Institute for Policy Research Working Paper, pp. 15-01 (2015).

7. Cook, P.J., Dodge, K., Farkas, G., Fryer, R.G., Guryan, J., Ludwig, J., Steinberg, L.: The
(surprising) efficacy of academic and behavioral intervention with disadvantaged youth: Re-
sults from a randomized experiment in Chicago, Working Paper No. 19862. National Bureau
of Economic Research (2014).

8. Crowston, K., Liu, X., Allen, E. E.: Machine learning and rule-based automated coding of
qualitative data. In: Proceedings of the American Society for Information Science and Tech-
nology, 47(1), pp. 1-2 (2010).

9. Dunivin, Z. O.: Scalable qualitative coding with LLMs: Chain-of-thought reasoning matches
human performance in some hermeneutic tasks. arXiv preprint arXiv:2401.15170 (2024)

10. Gao, J., Choo, K. T. W., Cao, J., Lee, R. K. W., Perrault, S.: CoAIcoder: Examining the
effectiveness of AI-assisted human-to-human collaboration in qualitative analysis. ACM
Transactions on Computer-Human Interaction, 31(1), 1-38 (2023).

11. Hou, C., Zhu, G., Zheng, J., Zhang, L., ... Ker, C. L.: Prompt-based and fine-tuned GPT
models for context-dependent and-independent deductive coding in social annotation. In
Proceedings of the 14th Learning Analytics and Knowledge Conference, pp. 518-528 (2024)

12. Hutt, S., DePiro, A., Wang, J., Rhodes, S., Baker, R. S., Hieb, G., Mills, C.: Feedback on
feedback: Comparing classic natural language processing and generative AI to evaluate peer
feedback. In: Proceedings of the 14th Learning Analytics and Knowledge Conference, pp.
55-65 (2024).

13. Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G.: Pre-train, prompt, and predict:
A systematic survey of prompting methods in natural language processing. ACM Compu-
ting Surveys, 55(9), pp. 1-35 (2023).

14. Miles, M. B., Huberman, A. M.: Qualitative data analysis: An expanded sourcebook. Sage,
Newcastle upon Tyne (1994).

15. Morgan, D. L.: Exploring the use of artificial intelligence for qualitative data analysis: The
case of ChatGPT. International Journal of Qualitative Methods, 22 (2023).

16. OpenAI: ChatGPT: OpenAI's conversational language model (2022).
17. Prabhumoye, S., Kocielnik, R., Shoeybi, M., Anandkumar, A., Catanzaro, B.: Few-shot in-

struction prompts for pretrained language models to detect social biases. arXiv preprint
arXiv:2112.07868 (2021).

18. Saldaña, J.: The coding manual for qualitative researchers, pp. 1–440 (2016).
19. Shaffer, D.W., Ruis, A.R.: How we code. In: Ruis, A. R., Lee, S. B. (eds.) ICQE 2020. CCIS,

vol. 1312, pp. 62-77 . Springer, Cham (2021).
20. Tai, R. H., Bentley, L. R., Xia, X., Sitt, J. M., Fankhauser, S. C., Chicas-Mosier, A. M.,

Monteith, B. G.: An examination of the use of large language models to aid analysis of
textual data. bioRxiv, pp. 2023-07 (2023).

21. Theelen, H., Vreuls, J., Rutten, J.: Doing research with help from ChatGPT: Promising ex-
amples for coding and inter-rater reliability. International Journal of Technology in Educa-
tion, 7(1), 1-18 (2024).

 15

22. White, J., Hays, S., Fu, Q., Spencer-Smith, J., Schmidt, D. C.: Chatgpt prompt patterns for
improving code quality, refactoring, requirements elicitation, and software design. arXiv
preprint arXiv:2303.07839 (2023).

23. Xiao, Z., Yuan, X., Liao, Q. V., Abdelghani, R., Oudeyer, P. Y.: Supporting qualitative
analysis with large language models: Combining codebook with GPT-3 for deductive cod-
ing. In: Companion Proceedings of the 28th International Conference on Intelligent User
Interfaces, pp. 75-78 (2023).

24. Zambrano, A. F., Liu, X., Barany, A., Baker, R. S., Kim, J., Nasiar, N.: From nCoder to
ChatGPT: From automated coding to refining human coding. In: Arastoopour Irgens, G.,
Knight, S. (eds.) ICQE23. CCIS, vol. 1895, pp. 470-485, Springer, Cham (2023).

