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Abstract. This paper examines the advantages and limitations of conducting au-
tomated coding of virtual tutoring session transcripts using the GPT-4 Turbo 
model via the OpenAI API. We compare three coding methods: (1) zero-shot, 
which relies solely on construct definitions; (2) few-shot, which includes anno-
tated examples; and (3) coding with context, which provides GPT-4 with sur-
rounding dialogue and study context. We used these approaches to code ten con-
structs from an existing codebook. We then had a set of experienced qualitative 
researchers rate the set of constructs across multiple dimensions. The results 
show that while zero-shot coding is effective for constructs with clear definitions, 
it tends to miss cases and struggles with constructs requiring contextual under-
standing. Few-shot coding works well for constructs that are seen as objective by 
experts, and those for which experts feel examples are needed to fully understand. 
However, it tends to overgeneralize based on the examples included in the 
prompt. Coding with context is particularly effective for constructs that often ap-
pear as part of sequences, but can also lead to the model coding more based on 
the context rather than the current line. This investigation highlights the potential 
of GPT-4 Turbo for efficient auto-coding of large datasets but emphasizes that 
specific prompting decisions impact quality and that the optimal decisions vary 
based on the characteristics of what is being coded.   

Keywords: Large Language Model, GPT, Qualitative Coding, Automated Cod-
ing 

1 Introduction 

With the recent large language model (LLM) advancements in technology for natural 
language processing, an increasing number of studies are exploring the use of these 
models for qualitative coding (e.g., [20, 23]). Qualitative data coding using LLMs po-
tentially offers a more cost-effective and time-efficient way of analyzing text. For ex-
ample, GPT (Generative pre-trained transformers), a LLM that can be interacted with 
through prompts to ChatGPT, has been increasingly employed for this purpose, demon-
strating promising results in coding various constructs (e.g., [15]). In these cases, 
prompts are given to GPT on how and what to code, with definitions and examples. 
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However, questions have been raised as to how accurate and reliable natural lan-
guage processing models can be for coding qualitatively [10]. Even given the evidence 
that GPT can code accurately [5], it still remains unclear what constructs it is best able 
to code. Does its ability to code vary across constructs, and how does the complexity 
of a construct influence its ability? To provide some evidence on these questions, we 
compared GPT-4’s ability to code ten constructs using three types of prompts: zero-
shot prompting, few-shot prompting, and prompts with context. To understand why the 
ability to code might vary, we identified five dimensions (i.e., clarity, concreteness, 
objectivity, granularity, and specificity) to evaluate the attributes of a construct. We 
asked experts to rate the ten constructs using the five dimensions and used the ratings, 
along with a measure that indicates the usefulness of examples, to examine how these 
dimensions of a coding category might explain the variability in ChatGPT’s ability to 
code using the three prompting methods. 

2 Related Work 

2.1 Qualitative Coding 

Qualitative coding, as a critical step in qualitative research, involves systematically la-
beling, categorizing, and organizing data into themes, concepts, or patterns to identify 
recurring ideas or concepts within the data [18]. Researchers assign labels or "codes" 
to segments of data that represent meaningful units of information. By analyzing and 
drawing connections among the codes, researchers are able to explore and interpret the 
underlying meanings and patterns [18]. 

Codes can be generated inductively, where researchers create codes based on the 
data itself without preconceived ideas or theoretical frameworks, or deductively (top-
down), where researchers rely on existing theories to define and operationalize codes 
[14]. The two methods are often used iteratively to ensure that the codes are grounded 
in both the data and theories [19]. In deductive coding, a predefined codebook is often 
used by raters, deciding on the presence or absence of a code within a segment of text. 

As noted in [19], qualitative coding can be a time-consuming and labor-intensive 
process, as researchers need to manually examine each text segment and label the codes. 
For years, researchers have attempted to find ways to qualitatively code automatically 
or partially-automatically [4, 8]. More recently, an increasing number of studies have 
explored the use of ChatGPT, to facilitate the coding process. In these studies, prompts 
are given to ChatGPT to tell it how to code, along with definitions and, in some cases, 
examples. For example, in [24], ChatGPT (GPT-4) was instructed to code the topic and 
valence of press releases (e.g., economic positive, economic negative, medical posi-
tive). Similarly, Chew et al. [5] used GPT-3.5 to apply codes to four publicly available 
datasets collected from reports, news articles, blog posts, and social media. In the field 
of education, [23] instructed ChatGPT (GPT-3) to code the types of students’ help-
seeking and [12] used ChatGPT to rate the quality of peer feedback. These studies found 
GPT promising for conducting coding and achieving good agreement to human-coded 
labels. However, some of these studies have found that LLMs’ success in coding varies 
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across constructs/coding categories and that LLMs perform worse for some constructs 
compared to more traditional NLP models. 

2.2 GPT and Prompt Engineering 

Large language models (LLMs) are advanced artificial intelligence systems designed 
to generate human-like text based on patterns and structures learned from large amounts 
of training data [3]. GPT as a generative AI built based on large language models has 
demonstrated considerable ability in processing and generating natural language.  

When using GPT, a prompt, which often includes a set of instructions, is used to 
describe a task, provide context, define guidelines, and/or specify a desired output [16]. 
Prompt engineering - the process of refining and improving prompts - may be employed 
to optimize the results. Several prompting methods have been experimented with and 
used to instruct models to improve outcomes, differentiated based on the specificity of 
instruction and the use of examples. For example, zero-shot prompting involves giving 
instructions for a task without any labeled examples, whereas one-shot or few-shot 
prompting involves using labeled data that provide examples for the model to learn 
from in addition to instructions. In [23], when GPT was instructed to code types of 
help-seeking, prompts that included examples (one-shot and few-shot) had higher 
agreement with experts’ coding than prompts with just a code and description (zero-
shot). Similar results were found in [3] and [17]. The selection of examples (e.g., in-
cluding both positive and negative examples) and the ordering of the examples have 
also been examined in relation to model performance [13]. In addition to the use of 
examples, prompt engineering research has also explored how the structure of prompts 
[22], the inclusion of context [11] such as describing GPT’s role in performing the task, 
and requiring GPT to justify its coding decisions [9] influence model performance.  

3 Method & Results 

3.1 Context 

The data used in our study consists of deidentified transcripts from four 60-minute vir-
tual tutoring sessions with 9th-grade students from high-poverty schools in the United 
States during the 2022-2023 academic year, focusing on Algebra I, obtained from [2]. 
The high dosage tutoring sessions were facilitated by the Saga Education platform. In 
these sessions, trained tutors offered personalized, small-group support for mathematics 
learning, a type of learning support that has been shown to be beneficial for students' 
math learning, achievement, and grades (e.g., [6, 7]). Each line of the transcript is an-
notated with the speaker and timestamp.  

3.2 Codebook Development 

To study GPT’s coding capabilities, we obtained a prior codebook developed by [2] for 
this data set. This prior study compared four different approaches to codebook 
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development: fully manual (human only), fully automated (ChatGPT only), and two 
hybrid approaches that integrate ChatGPT at different stages of the development pro-
cess. By using an existing codebook not developed by the researchers in the current 
study, we aim to mitigate potential biases, such as being able to better craft the prompts 
that could arise from familiarity with the codebook's creation process. 

For our analysis, we chose the hybrid codebook that was first crafted by humans and 
then refined using GPT (Human → ChatGPT). This codebook was selected because it 
offers the widest range of thematic meanings among those developed in the previous 
study. This broad range of themes allows for a more comprehensive examination of 
GPT's capabilities in coding various constructs, which is important for understanding 
both the strengths and limitations of this automated coding tool in qualitative research. 

In the study by [2], two researchers who were not involved in developing the code-
book were randomly assigned to code the tutoring lesson transcripts using the Human 
→ ChatGPT codebook. However, even after two rounds of coding, only four out of ten 
codes achieved a kappa of 0.6 or above. Therefore, in our study, two (new) human 
researchers independently coded the transcript lines based on the definitions of the con-
structs outlined in the codebook (see Table 1). The kappa values from their first round 
of coding were inconsistent, ranging from 0.24 to 0.87, which is comparable to the 
kappa values obtained in the second round of coding in [2]’s study using the same 
codebook. Since this human-coded data did not achieve sufficient agreement, the two 
researchers in our study then discussed any coding disagreements to achieve consensus 
and establish a single categorization for each transcript line [19]. 

Table 1. Codebook used for GPT coding capabilities assessment  

Construct Definitions and examples 

Greetings 
(κ = 0.70) 

Def: Lines unrelated to learning, useful for rapport. Lines during the start or 
mid-session as "Engagement Checks." 
Ex: "What's good, [Redacted]?" 

Direct                  
instruction 
(κ = 0.24) 

Def: Providing information or demonstrating methods without immediate 
student participation.  
• Definitions/Explanations: Stating mathematical rules or properties. 
• Demonstrating Steps: Giving instructions of how to solve a problem. 
Ex: "We got twelve equals one over x minus five." 

Guided practice 
(κ = 0.35) 

Def: Engaging students in problem-solving with support. Instructions in-
clude explanations, illustrations, reminders, and invites understanding. 
Ex: "Do that and then I want to see if you can solve from there." 

Questioning 
(κ = 0.87) 

Def: Prompting students to think, respond, or elaborate. 
• Recall & Comprehension: Asking students to remember or use something 
previously learned.  
• Higher Order Thinking: Questions that push students to analyze, evaluate, 
or plan next steps. 
Ex: "Twelve times x gives you what?" 
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Connect prior 
knowledge 
(κ = 0.45) 

Def: Linking current topics to previously learned concepts for cohesive un-
derstanding. 
Ex: "What kind of math is a fraction?" 

Clarification 
(κ = 0.72) 

Def: Reiterating or paraphrasing for clearer understanding, helping move 
from abstract to concrete thinking. 
Ex: "Anytime we multiply, we always multiply what's in the denominator." 

Feedback 
(κ = 0.66) 

Def: Offering constructive comments on student's performance or under-
standing. 
• Positive Reinforcement: Confirming correct understanding or steps or of-
fering words of encouragement or praise to motivate or acknowledge effort.  
• Corrective: Pointing out error, with or without explicitly giving correction.  
• Yes, and: Acknowledging student understanding and extending it. 
Ex: "The first one is right." 

Engagement 
checks 
(κ = 0.48) 

Def: Actively seeking signs of students' attention and participation. 
• Direct Check: Directly asking or observing the student's involvement.  
• Engagement Probes: Using strategies to pull students back into the lesson. 
Ex: "You working or you phased out?" 

Software/ 
tool use 
(κ = 0.45) 

Def: Reference to or assistance with using the tutoring software itself. 
Ex: "Touch screen you can pinch and move it around." 

Session logistics 
(κ = 0.33) 

Def: Addressing or organizing the structural aspects of the session. Indicat-
ing goals and tasks. Could be at the start, during, and end of session. 
Ex: "Try out number nine." 

* "κ" measures kappa between two human coders during the first round of coding 

3.3 Coding Data with GPT 

We then proceeded to code the data using GPT-4 Turbo, which is accessible via an 
application programming interface (API) provided by OpenAI. For this research, we 
used the model version gpt-4-Turbo-2024-04-09, the most recent version at the time of 
writing. This version has an updated knowledge cutoff of April 2023, and a context 
window of 128,000 tokens. The cost structure is $0.01 per thousand tokens for input, 
which is one-third the cost of the original GPT-4 model, and $0.03 per thousand tokens 
for output, which is half the cost for output tokens compared to the original GPT-4 
model. We used the default settings for hyperparameters, except for setting the temper-
ature hyperparameter to 0 to ensure the consistency of the output. 

When coding the data, we asked GPT to produce binary labels: 0 or 1. However, in 
rare instances where transcriptions were poor, GPT produced non-binary responses 
(e.g., "Sure, please provide the line you'd like to code"). We treated any response from 
GPT that did not provide binary labels as being incorrect, regardless of the ground truth 
value, since these responses would not be usable by a coder going forward. 

Due to the stochastic nature of GPT models, which can result in variable outputs, we 
ran the coding process three times to enhance the accuracy and thoroughness of our 
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evaluation for each coding approach. We then computed the average values for Kappa 
(κ), precision, and recall across all three iterations to assess GPT's performance. Given 
the emphasis on analyzing tutors' teaching methodologies, we excluded lines spoken 
by students from the model evaluation process. This process resulted in a dataset con-
sisting of 990 lines. For the third method, which also sends prior lines of data as context, 
we included student lines, but asked GPT to reference them instead of code them. 

Method 1: Coding with Zero-shot Prompting. We first coded the data using zero-
shot prompting. This method involves taking each construct one at a time, and then 
presenting the GPT-4 Turbo model with the definition of the current construct, followed 
by directly asking it to code each line in the full dataset using the following prompt: 

Please review the provided text and code it based on the construct: {con-
struct}. The definition of this construct is {definition}. After reviewing the 
text, assign a code of '1' if you believe the text exemplifies {construct}, or a 
'0' if it does not. Your response should only be '1' or '0'. 

This prompt was sent as a system message to the Chat Completions API endpoint, 
followed by the specific line of data that GPT should code sent as a user message. After 
coding all 10 constructs, we calculated the performance metrics for each (See Table 2). 

Table 2. Performance metrics for the zero-shot prompting 

Construct κ Precision Recall F1 Shaffer’s Rho 

Greetings 0.79 0.69 0.96 0.80 <0.01 

Direct instruction 0.11 1.00 0.06 0.12 1.00 

Guided practice 0.16 1.00 0.11 0.19 1.00 

Questioning 0.91 0.91 0.93 0.92 <0.01 

Connect prior knowledge 0.18 1.00 0.10 0.19 1.00 

Clarification 0.30 0.70 0.20 0.31 1.00 

Feedback 0.27 0.40 0.24 0.30 1.00 

Engagement checks 0.45 0.66 0.37 0.47 1.00 

Software 0.25 0.67 0.15 0.25 1.00 

Session logistics 0.15 1.00 0.09 0.16 1.00 

* Constructs with kappa values greater than 0.7 are bolded 

Review of Mis-coded Cases. We then analyzed misclassified cases in order to better 
understand GPT’s decision-making process in coding and its limitations. Upon review, 
we noticed that GPT's zero-shot coding approach is very conservative and tends to ex-
pect direct matches to the definitions in the codebook. For instance, for the construct 
Direct Instruction, GPT coded "So we got X minus three equals six" as 1, but coded 
"You want to get another six" as 0. This is likely because the instruction in the second 
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case is more implied and conversational. This issue is also reflected in the higher pre-
cision scores compared to recall for eight out of the 10 constructs. This suggests that 
while GPT (zero-shot) is usually correct when it identifies a code, it often misses rele-
vant instances that are less clear-cut. This highlights the importance of providing clear 
and comprehensive definitions in the codebook for a zero-shot approach, as this is key 
for GPT to perform accurately in qualitative coding. 

Secondly, we recognized that GPT (zero-shot) struggles with constructs requiring 
contextual understanding. For example, it coded the line “How you doing over there, 
[Redacted]?” as 1 for Greetings. However, this line occurred in the middle of a class 
session, which makes it an instance of Engagement Checks rather than Greetings. Sim-
ilarly, GPT coded every instance of “Perfect” as 1 for Feedback, even in cases where 
the instructor might be using “Perfect” as a filler word without offering actual feedback 
or encouragement. Additionally, GPT does not perform well at coding constructs that 
span multiple related lines of the same dialogue. For example, for the construct Feed-
back, human coders identified the consecutive lines “No” and “We're not going to mul-
tiply here” as Feedback (1). However, GPT only coded the second line as 0. This indi-
cates that for coding highly conversational data or constructs that require understanding 
context across multiple lines, the context-minimal zero-shot approach may not be ideal. 

Method 2: Coding with Few-shot Prompting  
We then coded the data using few-shot prompting. This approach uses the same prompt 
as the zero-shot method but now includes annotated examples with explanations before 
the line to be coded. We opted for annotated examples (instead of simply providing 
example text with no explanation) to provide explicit guidance on how the constructs 
should be interpreted and applied, which might improve the model’s accuracy in iden-
tifying and classifying relevant content as well as the edge cases. Below are three an-
notated examples for the construct Direct Instruction: 

(1) "Yeah, so track five on both sides first" because it specifies an action to 
be taken to solve a problem (2) "We got twelve equals one over x minus five" 
because it guides the student through a step in the process of solving an 
equation (3) "Remember, remember we're trying to get x by itself." because 
it provides guidance on what the focus should be during the task. 

This approach’s performance when applied to the coding of the 10 constructs is 
shown in Table 3. 

Table 3. Performance metrics for the few-shot prompting 

Construct κ Precision Recall F1 Shaffer’s Rho 

Greetings 0.50 0.37 0.85 0.51 1.00 

Direct instruction 0.79 0.95 0.71 0.81 <0.01 

Guided practice 0.55 0.56 0.83 0.67 0.32 

Questioning 0.89 0.85 0.97 0.91 <0.01 
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Connect prior knowledge 0.38 0.27 0.94 0.42 1.00 

Clarification 0.56 0.46 0.90 0.60 0.37 

Feedback 0.26 0.25 0.35 0.30 1.00 

Engagement checks 0.82 0.80 0.86 0.83 <0.01 

Software 0.71 0.67 0.77 0.71 0.07 

Session logistics 0.85 0.80 0.91 0.85 <0.01 

* Constructs with kappa values greater than 0.7 are bolded 

Review of Mis-coded Cases. Upon reviewing the misclassified cases, we observed that 
with more examples, the few-shot approach is generally able to identify when each 
construct appears with the exception of Feedback. However, it tends to overgeneralize 
based on the examples included in the prompt and incorrectly codes many irrelevant 
instances as 1. For example, when the interjection "All right, fellas" was included as an 
example for Greetings, GPT overgeneralized part of that phrase. As a result, 23 
instances of "All right" were misclassified as Greetings, even when it was used in an 
adverbial/adjectival form (i.e., "All right, let's look at number one."). When "All right, 
fellas" was removed as an example, misclassification dropped significantly. A similar 
overgeneralization issue arose with the Feedback construct, where GPT incorrectly 
coded 10 out of 11 instances that contained only the word "No" as containing Feedback 
after being given the following example: "No, not quite one x because you divided the 
negative three by three but did you divide the x by x?" This issue is also reflected in 
recall scores, which increased for all constructs compared to the zero-shot approach, 
while precision decreased for all but one construct. The findings highlight the 
importance of selecting examples that minimize the risk of overgeneralization, and 
reviewing results in detail to identify unanticipated cases where they occur.  

Method 3: Coding with context 
For our third approach, we added context to the coding prompt in addition to the con-
struct definition and annotated examples used in the second method. We implemented 
this approach for two reasons. First, some sentences in the transcription were split 
across multiple lines (e.g., when participants interrupted each other), and this approach 
allows GPT to reference earlier parts of a sentence if needed. Second, some construct 
definitions in the codebook specify when they are likely to occur during the tutoring 
session (e.g., Greetings often occur at the start, Engagement Checks might occur mid-
session), and including prior lines (if they are present) might help GPT identify the 
location of the line. Contextual information consisted of (1) a summary background of 
the study covering how the data was collected, the subjects taught, and the recording of 
transcripts; (2) the three lines preceding the current line (if not coding the first three 
lines), and (3) each line's timestamp and speaker (instructor or student). The decision 
to include three lines was based on a preliminary analysis of 20 randomly selected lines. 
For example, when coding the fourth line in the second tutoring session, the model will 
receive the following contextual information along with the study background: 
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CONTEXT (3 lines before the text you should code. Use this for context under-
standing, but do not code this part): 
00:07 - [Instructor]: "Okay, so you should remember this from last time."  
00:12 - [Instructor]: "We're gonna go ahead and use our grouping method." 
00:17 - [Instructor]: "So factor these equations using our grouping method."  

The performance metrics for this approach are recorded in Table 4. 

Table 4. Performance metrics for coding with context 

Construct κ Precision Recall F1 Shaffer’s Rho 

Greetings 0.74 0.82 0.69 0.75 0.01 

Direct instruction 0.62 0.56 0.89 0.69 0.10 

Guided practice 0.86 0.91 0.87 0.89 <0.01 

Questioning 0.60 0.53 0.98 0.69 0.22 

Connect prior knowledge 0.78 0.78 0.83 0.81 <0.01 

Clarification 0.30 0.23 0.87 0.37 1.00 

Feedback 0.15 0.13 0.67 0.21 1.00 

Engagement checks 0.53 0.48 0.68 0.56 1.00 

Software 0.60 0.43 1.00 0.60 0.32 

Session logistics 0.41 0.28 0.97 0.43 1.00 

* Constructs with kappa values greater than 0.7 are bolded 

Review of Mis-coded Cases. The context-based coding approach seems to work best for 
constructs that typically involve repetition or continuation across consecutive lines, 
such as Guided Practice and Connect Prior Knowledge. For these categories, isolated 
lines (defined as lines coded as 1 with no other 1’s in the three rows above) appeared 
only 29% and 26% of the time, respectively. Despite explicit instructions to GPT to use 
the previous three lines as reference but not to code them, it still tends to code the cur-
rent lines based on the previous ones, which has resulted in many consecutive lines 
coded as 1s for each construct. This creates a problem when the conversation topic 
changes between prior lines and the coded line, such as in constructs that tend to appear 
in isolation. For example, the Clarification construct has isolated lines 65% of the time, 
and Session Logistics has isolated lines 60% of the time. 

3.4 Evaluating Construct Complexity  

Based on our previous experience in qualitative coding, we created a rubric of five 
dimensions that we found useful for evaluating the complexity of constructs: clarity, 
concreteness, objectivity, granularity, and specificity (See Table 5). These dimensions 
guided our investigation into the relationship between construct complexity and GPT-
4 Turbo’s coding ability. The rubric and codebook of 10 constructs were distributed to 
a group of researchers familiar with qualitative coding and analysis. Eleven researchers 
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reviewed the name and definition of each construct and rated them from 1 (lowest) to 
5 (highest) for each dimension. Researchers were then presented with examples and 
asked to rate their usefulness for improving their understanding of the constructs. 

Table 5. The five dimensions used to evaluate construct complexity  

Dimension Definition 

Clarity 
Clarity (as opposed to ambiguity) measures how well-defined and easily com-
prehensible a concept is, without ambiguity or confusion. 

Concreteness 
Concreteness (as opposed to abstractness) refers to the quality of being spe-
cific, tangible, and perceptible by the senses. 

Objectivity 
Objectivity (as opposed to subjectivity) means verifiable information based 
on facts and evidence, whereas subjective means information or perspectives 
based on feelings, opinions, or emotions. 

Granularity 
Granularity (as opposed to coarseness), refers to the extent to which a concept 
involves finer, detailed elements. 

Specificity 
Specificity (as opposed to generality) measures the extent to which a con-
struct is distinct and can be clearly distinguished from other related concepts, 
rather than being conflated with them/overlapping them. 

 
For each construct, we computed the average of ratings on the five dimensions along 
with the usefulness of examples (See Table 6). 

 Table 6. Average scores of evaluated dimensions for each construct 

Construct Best method Clarity Concreteness Objectivity Granularity Specificity Example 

Greetings Zero-shot 4.64 4.18 3.45 3.82 3.45 3.64 

Direct       
instruction 

Few-shot 3.73 3.64 2.82 3.73 3.09 4.45 

Guided 
practice 

Coding with 
context 

3.64 3.55 2.82 2.91 3.27 3.64 

Question-
ing 

Zero-shot 4.82 4.45 4.45 4.27 4.27 3.64 

Connect 
prior 
knowledge 

Coding with   
context 

3.91 3.27 3.36 2.82 3.27 3.64 

Clarifica-
tion 

- 3.55 2.73 3.00 3.00 3.18 3.73 

Feedback - 3.82 2.82 3.00 3.55 3.18 3.64 

Engage-
ment 
checks 

Few-shot 3.64 3.18 2.73 3.36 3.18 4.55 
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Software Few-shot 3.45 3.91 4.45 3.55 3.73 4.64 

Session   
Logistics 

Few-shot 3.36 3.45 4.00 3.55 3.73 3.91 

* The best coding method for each construct is selected if it has the highest κ among all three 
methods and κ ≥ 0.75. Constructs with κ < 0.75 are still included in the correlation analysis. 

Due to non-normality in the data, we used Spearman correlations to investigate the 
relationship between each pair of dimensions to understand how different dimensions 
relate to each other. Correlations were moderate, with an average Spearman correlation 
coefficient of 0.36 (SD = 0.49). Notably, there was a very high correlation (0.87) be-
tween objectivity and specificity.  

3.5 Agreement and Construct Complexity 

We next calculate Spearman correlations between the average values for the dimen-
sions and the κ values achieved by GPT-4 Turbo in coding tasks for each of the three 
methods (See Table 7). We chose this approach because the small sample size limits 
the reliability and power of more complex statistical models. Additionally, multicollin-
earity among our dimensions makes it challenging to use regression-based methods 
without introducing significant bias or instability in the estimates. Spearman correlation 
coefficients, being non-parametric, do not assume a specific distribution of the data; 
this is important because many of our measures were non-normal, making them suitable 
for identifying monotonic relationships between the dimensions and the κ values. 

We did not conduct post-hoc corrections for p-values because our significance test-
ing showed that none of the correlations were statistically significant even without post-
hoc correction. However, the Spearman correlation coefficients still provide suggestive 
and interpretable insights that allow us to generate hypotheses about the strengths and 
weaknesses of GPT as an automated coding tool. 

Table 7. Summary of spearman correlation coefficients across different methods 

Construct Clarity Concreteness Objectivity Granularity Specificity Example 

Zero-shot 0.50 0.15 0.24 0.34 0.28 - 

Few-shot -0.24 0.39 0.20 0.41 0.36 0.48 

Coding with con-
text 

0.40 0.55 -0.05 -0.12 0.17 -0.33 

The positive coefficient of 0.50 for clarity and performance in zero-shot coding in-
dicates a direct and moderate positive relationship between the clarity of the content 
and the κ score. This suggests that clearer and unambiguous definitions tend to improve 
agreement between human and GPT in a zero-shot approach. Interestingly, this corre-
lation decreases for coding with context (0.40) and becomes negative for the few-shot 
approach (-0.24). This suggests that GPT can identify patterns that humans struggle to 
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define but can recognize through examples. The zero-shot and few-shot approaches 
achieve better performance for more granular constructs; in these cases, extra context 
may not be useful (as the construct only needs one line due to its high granularity) and 
serves as a distraction. Examples that humans found useful were associated with better 
performance for the few-shot approach (0.48), but the reverse seemed to be true for 
coding with context (-0.33). It is possible that the additional context could overwhelm 
GPT, causing it to rely less on the examples and more on surrounding information. 

4 Discussion and Conclusion 

In this paper, we explored the potential of the GPT-4 Turbo model through the OpenAI 
API for automated coding, using a codebook previously developed in partnership be-
tween a human and GPT [2]. The data consisted of transcripts from four 60-minute 
virtual tutoring sessions with 9th grade students. To assess the complexity of constructs 
in the codebook, we asked experts in qualitative coding to evaluate the constructs across 
five identified dimensions. We then calculated the average of these dimensions and 
correlated these averages to the κ scores from three coding approaches to evaluate the 
strengths and weaknesses of GPT-4 Turbo for automated coding. 

We employed three distinct methods to code the data: 1) zero-shot coding, which 
presents only the construct definition to GPT and prompts it to code, (2) few-shot cod-
ing, which includes annotated examples along with the construct definition before 
prompting GPT to code, and (3) coding with context, which provides GPT with some 
context of the study and the preceding lines to aid in coding the current line. For eight 
out of the 10 constructs, the GPT-4 Turbo achieved good agreement with human coders 
(κ ≥0.70) for at least one of these prompt engineering approaches. This finding indicates 
GPT-4 Turbo's general capability to accurately code a wide range of constructs. How-
ever, each method showed unique strengths and limitations, and not every method was 
equally effective for all constructs. 

We found that zero-shot prompting can achieve high performance for well-defined 
constructs (e.g., Greetings and Questioning), which have straightforward and easily 
comprehensible definitions. However, zero-shot coding tends to miss many cases, re-
sulting in lower recall than other methods. This approach also incorrectly codes some 
cases due to a lack of contextual cues, similar to findings in [1, 21]. 

Few-shot coding is effective for constructs with high objectivity, such as Software 
and Session Logistics, where the information is based on verifiable information or evi-
dence. It is also effective for constructs with low objectivity but highly useful examples, 
such as Engagement Checks and Direct Instruction, where additional explanations help 
clarify subjective information. However, incorporating annotated examples may lead 
to overgeneralization in some cases, as the model might apply specific patterns from 
the examples to unrelated contexts. In these instances, more straightforward zero-shot 
prompting often performed better. 

Coding with context is more accurate for constructs that require understanding of 
surrounding context or temporal relationships between data lines. This method is useful 
for constructs where lines that should be coded often appear consecutively, such as 
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Guided Practice and Connect Prior Knowledge, where the preceding lines provide es-
sential context for accurate coding. However, this approach can cause problems when 
context lines include different constructs than the current line being coded. 

On the other hand, we observed that all methods struggled with constructs that have 
a lower level of concreteness, such as Clarification and Feedback. These constructs are 
more abstract and rely heavily on interpreting subtle cues and implicit information that 
the model struggles to accurately code. Furthermore, all methods, similar to humans, 
face difficulties with coding edge cases, particularly when additional context is needed 
to make a decision, as noted in [9]. 

One limitation of using the GPT-4 Turbo model through the OpenAI API, compared 
to ChatGPT, is that the API is less effective at explaining its decisions, identifying am-
biguities in definitions, and discussing inconsistencies in human coding. This is because 
ChatGPT is specifically fine-tuned for conversation and interaction, which makes it 
better suited for these tasks. Examples of this can also be found in our prior work [2, 
24]. However, using the API for qualitative coding has significant advantages in terms 
of efficiency. It is highly automated; once the prompt is defined and the chat completion 
endpoint is set up, it can automatically code all lines in the dataset. This eliminates the 
need to copy and paste or send prompts repeatedly to the chat window, making it a 
much more efficient approach when dealing with large datasets. Additionally, it is much 
easier to recode the data by API if the prompt needs to be updated and also allows 
researchers to modify the default hyperparameter settings (such as temperature) to 
achieve more consistent results. 

Overall, this study suggests that GPT-4 Turbo can be useful for qualitative coding 
in Quantitative Ethnographic research, but that there remains some engineering work 
in doing so optimally. A current limitation of the work is that we only tested using one 
dataset and one codebook, so findings may not be generalizable to other research con-
texts. Future research should test this approach on other constructs and datasets to de-
termine if different patterns or insights emerge. By systematically exploring which 
types of constructs GPT can code more effectively identifying those that present chal-
lenges, we aim to develop more reliable coding methodologies across different qualita-
tive research contexts. Ultimately, this research seeks to harness the full potential of 
GPT for qualitative coding, turning it into a reliable tool that reduces the time research-
ers spend on coding without compromising quality. 
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