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Abstract. This study explores the integration of Large Language Models 
(LLMs), specifically GPT-4o, with machine learning (ML) to automatically de-
tect struggle behaviors in a science exploration game. We evaluate GPT-4o's abil-
ity to analyze text replays, which convert raw gameplay logs into human-readable 
sequences of player actions, against existing machine-learned struggle detectors. 
The LLM and ML approaches achieve comparable performance but have com-
plementary strengths. GPT-4o is effective at identifying struggle in instances 
where the human-engineered features used in traditional ML models fail to cap-
ture meaningful behavioral patterns, while ML detectors perform better at iden-
tifying struggle in tasks that involve numerical reasoning (e.g., frequent pauses) 
and in more complex tasks where structured features provide clearer signals. 
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1 Introduction and Related Work 

Educational games have been shown to support learning by immersing students in in-
teractive environments (e.g., [7]). They are well-suited for teaching skills that benefit 
from practical application (e.g., solving mathematical problems [18], understanding 
scientific phenomena [1], or exploring historical events [14]). Scholars have long rec-
ognized the importance of understanding students' emotions and behaviors during 
gameplay, which influence how students interact with the game [22] and shape their 
learning outcomes [19, 23]. Automated detectors have been developed to identify emo-
tions and behaviors from real-time gameplay (e.g., [6, 25]), sometimes using physical 
sensors (e.g., [10]). However, these detectors have been expensive and time-consuming 
to develop and rarely scale across systems (though outside of game context, see [17]).  

Recently, the emergence of large language models (LLMs) like GPT have opened 
new possibilities for analyzing textual data at scale in educational contexts (e.g., [2]). 
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Prior research suggested that LLMs can reliably process text for various tasks such as 
identifying thematic patterns [5], automating assignments grading [15], and providing 
feedback on written responses [24]. However, LLMs cannot currently directly ingest 
the types of interaction data that detectors have worked from. To use this new genera-
tion of methods, we must find a way to translate interaction data into a form that LLMs 
can easily understand and corresponds to something in their training corpuses. 

One promising approach draws on a method previously used by researchers to label 
interaction data for training detectors. Humans, like LLMs, cannot easily read interac-
tion data. Therefore, Baker et al. [4] proposed re-representing interaction data in an 
easy-to-read format, text replays—readable, sequential narratives of students' actions 
derived from interaction logs. Text replay has been used by teams of coders to generate 
ground truth labels for training ML models to detect specific behaviors (e.g., [3, 8, 11, 
16, 21]). They allow rapidly identification of the behavior of interest (2-6 times faster 
than classroom or video observation) while achieving inter-rater agreement only 
slightly lower than classroom observation [4]. The formatted narratives help research-
ers recognize patterns that would be difficult to detect from raw data alone. 

Text replay, at its core, is a textual representation of interaction data, and it is possi-
ble that LLMs may be able to read text replays just as humans can.  In this study, we 
examine whether GPT-4o can detect moments of struggle in the science exploration 
game Wake using text replays. Our goal is to assess the feasibility of this approach and 
to compare its performance with more traditionally machine-learned detectors.  

2 Methodologies and Results 

Wake: Tales from the Aqualab is a science education game designed for middle school 
students in grades 6–9. In the game, players take on the role of a young marine biologist 
named Olivia to learn more about marine biomes and their respective ecological sys-
tems in the game. Each ecosystem includes multiple research sites where players take 
on "jobs." A "job" represents a scientific assignment or mission within the game, such 
as studying the impact of an invasive species or monitoring biodiversity in a specific 
habitat. Wake uses the Open Game Data infrastructure to track and log player activities 
[9]. The opengamedata-unity package connects the game to a cloud-based server, which 
records player actions throughout each session. The game organizes telemetry data into 
three categories: Player Actions (general navigations, e.g., entering data into scientific 
tools). System Events (system messages, e.g., narrative elements that direct the player's 
actions). Progression Events (in-game milestones, e.g., player completing tasks). The 
telemetry data records 33 distinct player actions, 12 system events, and 6 progression 
events. Each event includes metadata that specifies the timing, sequence, player identi-
fication, and game state at the time of the event. These events are transmitted to the 
Open Game Data server in real time creating a chronological log of gameplay. 
    The data used in the study were sampled from data collected from January 2024 to 
May 2024. This dataset includes 19,186 players across 42,889 sessions. We sampled 
data in three rounds. In the first round, we selected 200 cases (40 per month) to evaluate 
how well GPT and ML could detect struggle for Wake. Based on what we learned, we 
refined the instructions given to GPT. The second round included 100 new cases (20 
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per month) to check if the updated prompt caused overfitting and if GPT and ML could 
be integrated for more accurate struggle detection. The third round added another 100 
cases to test whether the hybrid GPT-ML model could generalize to unseen data. We 
only included jobs that lasted at least five minutes and had over 100 logged actions to 
make sure there was enough gameplay data for analysis.  

2.1 Creating and Coding Text Replay Clips 

We then converted log data into text replays to facilitate the examination and coding of 
student struggle behaviors. Each replay included all actions from when a player ac-
cepted a job until they moved to a different job. Log events unrelated to gameplay or 
job completion were removed. Using timestamps from the logging system, we calcu-
lated the time elapsed since the start of each gameplay session (defined as a continuous 
period between entering and exiting the game). Elapsed time was rounded to the nearest 
second and listed cumulatively. If multiple events had the same timestamp, they were 
grouped under the same time to reflect co-occurrence. Session numbers were recorded 
to separate distinct play periods, and elapsed time was reset at the start of each session. 
Each text replay began with the job name, which allowed coders to cross-reference it 
with the teacher guide (sites.google.com/wisc.edu/waketeacherguide) that details each 
job's objectives and expected progression as context for identifying student struggling.  

Evaluating the performance of GPT requires reliable ground truth labels. After gen-
erating the text replays, two graduate students with expertise in qualitative coding in-
dependently labeled each clip as "Struggle" or "Not struggle," based on all actions 
within each clip. Struggle was defined as any indicator where the player might be facing 
difficulties or in need of help. The definition was intentionally simplistic and broad, as 
the goal was not to exhaustively list all possible manifestations of struggle. Instead, 
both coders were encouraged to evaluate each case individually while considering the 
specific context in which the struggle emerged. Differences in the coders’ game expe-
rience led to low initial inter-rater reliability (κ = 0.45) after round 1. Discrepancies 
between coders were resolved through moderated discussions to reach a consensus. Af-
ter discussions, their agreement improved to κ = 0.76 in round 2 and 0.78 in round 3. 

2.2 Re-construction the Machine Learned Struggle Detection 

As part of efforts to improve student engagement and provide timely in-game scaffold-
ing, a previous study developed a machine-learned detector to automatically identify 
instances of struggle within the game [12]. This serves as an ideal benchmark for eval-
uating the effectiveness of GPT in detecting struggle. To accommodate updates in the 
game's data logging structure, we re-created 58 features from that previous study. The 
features were aggregated, selected, and validated following the same approach in [12].  

2.3 Automated Coding of Struggle with GPT 

We coded the 200 text replay clips extracted from round 1 using GPT via OpenAI's 
application programming interface (API). For this study, we used the GPT-4o-2024-
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11-20 model with all hyperparameters set to default values, except for the temperature, 
which was set to 0 to increase output consistency. Each prompting approach was repli-
cated three times on a 10% subset (20 clips) of the round 1 data, with no more than two 
cases showing disagreement across the three runs. We then applied each prompt to code 
all 200 clips and calculated agreement between GPT’s predicted struggle labels and the 
human-coded ground truth (see Table 1). 

1. Partially Knowledge Engineered Prompt. We first assess GPT's ability to analyze 
student interactions and identify struggle based on the same broad definition outlined 
above. This setup incorporates a partially knowledge-engineered framework, rather 
than relying solely on the model's reasoning abilities, to reduce the likelihood that 
GPT would produce inconsistent or irrelevant interpretations of gameplay behavior. 

2. Incorporating Contextual Information. Human coders rely on implicit knowledge 
to identify struggles in text replays. GPT, however, does not have access to this con-
textual knowledge by default. Without such information, GPT might misinterpret 
behaviors that would otherwise clearly indicate a struggle. Therefore, contextual de-
tails (specifically, job objectives, task difficulty ratings, and the expected progres-
sion of actions) were added to the text replay clips as a second prompting method. 

3. Annotated Examples with Human Explanations. Earlier strategies relied solely 
on GPT’s interpretation, this approach, however, introduced four annotated exam-
ples with human-provided explanations. These examples were drawn from a sepa-
rate dataset and provided explicit instances of struggle with rationales. The examples 
illustrated situations where students 1) paused extensively during an experiment 2) 
frequently returned to previously visited locations, 3) repeatedly performed actions 
that deviated from the hints and 4) cycled through the same choices in experiments.  

When annotated examples were included in the prompt, GPT performed compara-
bly to the XGBoost model in detecting struggle. This prompting approach was then 
selected for the next stage of research. However, incorporating contextual information 
led to a decline in the model's performance, which aligns with previous research sug-
gesting that excessive information can overwhelm GPT during decision-making [13].  

Each job in the game is rated by the designers for difficulty across three core dimen-
sions, Experimentation, Argumentation, and Modeling, on a scale from 1 to 5 (see 
teacher’s guide). We calculated the average difficulty of each job to examine whether 
model accuracy varied with difficulty level. GPT (κ = 0.76) showed greater reliability 
on jobs with lower average difficulty (< 1.5, n = 22) than XGBoost (κ = 0.69). One 
possible explanation is that simpler jobs involve fewer player actions, which produce 
less variation across engineered features. This reduces the usefulness of engineered pat-
terns that XGBoost relies on to make predictions. A similar reason also explains why  

Table 1. Performances metrics for each prediction method 

Model Method Kappa (κ) Precision Recall F1 
 

GPT 
Knowledge Engineered 0.68 0.82 0.98 0.89 
Contextual Information 0.45 0.64 0.97 0.77 

Examples 0.70 0.84 0.97 0.90 
XGBoost Feature Engineering [12] 0.72 0.88 0.91 0.90 
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GPT (κ = 0.63) is less accurate than XGBoost (κ = 0.74) on high-difficulty jobs (avg. 
difficulty > 4.5, n = 15), where more complex player behavior generates patterns that 
are better captured by the engineered features used by XGBoost. 

GPT and XGBoost show contrasting performance for two specific jobs: Missing 
Whale and Final. GPT matched human labels perfectly (κ = 1, n = 6), whereas XGBoost 
shows substantial difficulty (κ < 0). This may be due to the unusual structure of these 
jobs. Missing Whale is the only job that players can accept without the required up-
grade, which often force them to quit and switch to another job before returning. Final 
consists primarily of scripted dialogue, so the player normally completes the job with 
minimal actions. As a result, the gameplay data for these jobs contains fewer measura-
ble patterns that reduces the predictive power of XGBoost.  

Further analysis showed that GPT failed to identify cases where long pauses between 
actions served as struggle indicators, possibly due to the use of cumulative timestamps 
in the text replays, which required interval calculations difficult for GPT [20]. We also 
noted that GPT was more accurate in identifying non-struggle cases (precision = 0.95) 
than struggle. This may stem from explicit definition of struggle, which leads GPT to 
label a clip as non-struggle only if it detects a complete absence of relevant indicators. 
 
Iterative Prompt Engineering Through Review of Miscoded Cases. GPT’s ability 
to interpret narrative elements can sometimes cause misclassifications. For example, it 
consistently labeled all Eat Seaweed job clips as struggle due to a scripted line where 
the character Olivia expresses uncertainty to the guiding character V1ct0r, despite the 
player making steady progress. To correct this, we updated the prompt to clarify the 
distinction between story context and player actions. The update slightly improved 
GPT’s performance on the original 200 clips (κ: 0.70 → 0.72) and maintained stable 
accuracy on 100 unseen clips from round 2 (κ = 0.71), with consistent output across 
replications (no more than two differences across three runs on 20 clips). 

2.4 Integrating GPT and XGBoost to Detect Struggle 

Leveraging these findings, we created a hybrid model that combines the strengths of 
GPT and XGBoost for predicting struggle (see Fig. 1). If the student is working on a 
uniquely structured job or one with low difficulty averaged across the three dimensions, 
we use GPT’s prediction. For jobs with high average difficulty, we follow XGBoost’s 
prediction. In other cases where GPT predicts “Not struggle,” we accept it if the clip 
shows no frequent pauses. If frequent pauses are present, we refer to XGBoost and 
assign “Not struggle” only if its predicted probability exceeds 0.75. If both models pre-
dict struggle, we label the case as such. In all remaining cases where the models disa-
gree, we label the clip as “Not struggle” if XGBoost’s probability exceeds 0.75, and 
“Struggle” otherwise. This threshold was selected based on the AUC-ROC curve con-
structed from the validation set (clips from round 2). The hybrid model achieved κ of 
0.92 when validated using human-coded labels for the 200 clips from round 1. On 100 
unseen clips from round 3, κ was 0.77, with precision 0.92 and recall 0.86. Although 
this drop suggests some overfitting, the hybrid model still outperformed the individual 
models (κ!"#$$%& = 0.69;	κ"'((*+,-./*%) = 0.69). 
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Fig. 1. Hybrid framework for predicting struggle using both GPT and XGBoost detector  

3 Discussion and Conclusions 

This paper examines the potential of GPT-4o to automatically detect student struggle 
behaviors in a science exploration game by analyzing text-based replays of log data. 
We find that GPT-4o performs comparably to a machine-learned detector trained for 
the same task but has different strengths.  GPT-4o was effective in identifying struggle 
in simpler jobs or jobs with structures not well-represented in the training data and 
could use information from narrative elements or system messages. This allowed it to 
identify struggle that manifests in ways that are hard to quantify. GPT-4o also offers 
practical advantages. Building a machine-learned model requires selecting and tuning 
features, which can be time-consuming and technically demanding. In contrast, GPT-
4o analyzes log data directly once it is converted to text. While some preprocessing is 
still needed, the overall setup is more accessible to researchers or educators without 
machine learning expertise. In contrast, XGBoost performed better when struggle fol-
lowed measurable patterns, such as frequent or prolonged pauses between actions, that 
were well captured in the numerical features used to train the model. These differences 
suggest that the two approaches are complementary. Our hybrid model that combines 
GPT-4o and XGBoost better detected struggle in unseen data than either method alone.  

This study has several limitations. First, we could not be certain that the clips labeled 
as instances of struggle by humans actually reflected the student’s experience of strug-
gle, a general problem in using external expert judgment to assess internal experiences. 
Second, GPT-4o’s performance may depend on how struggle manifests in a specific 
game, and generalizability remains uncertain. Third, it is not entirely clear how GPT-
4o arrives at its predictions, making it hard to be certain whether its judgments are based 
on meaningful factors or spurious correlations. Despite these limitations, GPT-4o 
shows promise for making behavior detection more accessible and scalable. Its ability 
to work directly from text replays opens new possibilities for detecting student behav-
iors across a range of digital learning environments. 
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