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Abstract. Since the formalization of Quantitative Ethnography (QE) as a meth-
odology, Epistemic Network Analysis (ENA) has been the most widely used an-
alytical tool in the community. ENA has proven itself highly useful for QE re-
search, particularly in modeling temporal associations between code pairs. How-
ever, integrating additional techniques that systematically reveal more complex 
patterns in data can not only supplement the insights derived from ENA but also 
broaden the range of research that can be conducted through a QE lens. To that 
end, this paper proposes Association Rule Mining (ARM) as an additional tech-
nique for QE. We introduce a new visualization of the results of ARM, which we 
term Epistemic Association Rule Networks (EARN), which combines ENA's vis-
ualization strengths with ARM's ability to identify more complex patterns. Using 
human-human tutoring transcripts, we illustrate how ARM and EARN can com-
plement ENA by offering insights on directional conditional relationships be-
tween groups and pairs of constructs, offering a more nuanced understanding of 
complex phenomena. 

Keywords: Association Rule Mining, Epistemic Network Analysis, Epistemic 
Association Rule Networks. 

1 Introduction 

Since the formalization of Quantitative Ethnography as a methodology, Epistemic Net-
work Analysis (ENA) has been the most popular analytical tool in the community [1]. 
However, members of the QE community have argued that it is important to differen-
tiate QE as a methodology from ENA as an analysis tool [2]. QE is a multidisciplinary 
field encompassing a variety of methodological approaches and tools where ethnogra-
phy and quantification are both foundational [3]. Given this framing, there are a range 
of additional quantification techniques that can complement the insights provided by 
standard ENA models, so long as these techniques aid in the systematic and fair inter-
pretation of the contextual meaning represented in the data. For example, models such 
as Process Mining [4] and CORDTRA [5] have been used to recognize chronological 
sequences and patterns that the standard ENA model could not show. Inspired by these 
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ideas for complementing standard ENA models, we propose Association Rule Mining 
(ARM; [6]) as another technique that might be useful for the QE toolbox. 

ARM is a data mining technique extensively utilized by data scientists to identify 
relationships, patterns, and associations among items in large databases. Like Epistemic 
Network Analysis, ARM attempts to recognize associations through the occurrence and 
co-occurrence of constructs within specified timeframes, instances, or stanzas. How-
ever, there are notable differences between the two methods. In specific, ARM is capa-
ble of discovering rules or associations involving groups of more than two constructs 
and provides a variety of metrics to quantify these associations, including conditional 
relationships between constructs [7]. These features of ARM suggest it has the potential 
to offer insights about complex phenomena that are both complementary and supple-
mentary to ENA. However, while some visualization techniques like Association Rule 
Networks (ARN; [8, 9]) have been developed to present ARM findings, they generally 
do not match the interpretability of ENA models.  

In this paper, we explore how ENA and ARM can be integrated to enhance data 
analysis. Specifically, we introduce a novel network visualization called Epistemic As-
sociation Rule Networks (EARN), which adapts the traditional ENA visualization to 
display association rule patterns based on ARM metrics. We use transcripts from hu-
man-human math tutor lessons as a case study to illustrate the utility of ARM and 
EARN as a complement to standard ENA. Our goal is to show how the tools, metrics, 
and techniques commonly used by the ARM community may be used to enrich QE 
research. 

2 Two Approaches 

2.1 Epistemic Network Analysis 

Epistemic Network Analysis (ENA) is a quantitative ethnographic technique designed 
to model the structure of connections between a set of constructs. A common assump-
tion of the method is that the selected constructs represent different aspects of cognition 
or behavior relevant to the study and their structure of connections is meaningful to 
analyze the discourse and culture embedded in that data [10, 11]. ENA has been used 
for a wide range of analyses, including learning processes in digital learning environ-
ments [12]; task performance [13]; gaze patterns [14]; team communication [15]; social 
media [16]; and video game players’ behaviors [17]. 

The connections identified by ENA are modeled by quantifying the co-occurrence 
of constructs within and across lines of coded data, which are segmented into conver-
sations of discrete data and organized into units of analysis that can be visually and 
statistically compared through weighted networks of co-occurrences. Typically, the 
ENA algorithm uses a moving window to accumulate these connections between codes 
in the current line and prior lines in a conversation [11, 18]. These matrices of code 
connections are then cumulatively aggregated across all lines for each analysis unit, and 
normalized to adjust for variations in the number of coded lines per unit. Subsequently, 
ENA employs singular value decomposition (and additional rotations in cases where 
the main goal is to compare 2 or multiple groups) to derive two orthogonal dimensions 
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that maximize the variance explained by each dimension, facilitating the visualization 
and interpretation of these networks. For a more detailed explanation of the mathemat-
ical processes involved, refer to [11, 19]. 

Networks in ENA are visualized using network graphs, where nodes represent the 
codes, and edges indicate the relative frequency of co-occurrence between two codes. 
Each unit of analysis is represented by two coordinated visualizations: (1) a plotted 
point, which marks the location of that unit's network in the low-dimensional projected 
space, and (2) a weighted network graph, which represents the strength of connections 
between each pair of codes. The positions of the nodes in the network graph are calcu-
lated through an optimization routine that aims to minimize the discrepancy between 
the plotted points and their corresponding network centroids. This alignment of network 
graphs with the projected space allows the positions of the nodes (and the connections 
they establish) to interpret the dimensions of the projected space, thereby explaining 
the positions of plotted points within that space, although with the limitations inherent 
to any dimensionality reduction.  

ENA enables the comparison of units of analysis through examination of the posi-
tions of plotted points, individual networks, mean plotted point positions, and mean 
networks. Additionally, comparisons can be made using network difference graphs gen-
erated by subtracting the weight of each connection in one network from the corre-
sponding connections in another network and rotating the networks to maximize the 
variance of the groups being compared towards one single axis, highlighting visually 
the differences between them. 

Ultimately, the strengths of this technique lie in the capacity for epistemic networks 
to account for associations across multiple themes in complex temporal data. Epistemic 
networks also create a common comparison space to understand relative patterns within 
and across units of analysis. However, like any approach, ENA alone cannot address 
all types of inquiries. In particular, ENA does not look at relationships between more 
than two constructs at a time, and traditional ENA also does not give ordered (chrono-
logical), or conditional (one-directional – where A implies B, but B may not imply A -
- but not necessarily causal or chronological) directionality of associations. Although 
chronological directionality has been developed in ordered networks [20], conditional 
directionality has not been addressed yet. As ARM can consider more than 2 constructs 
at a time and offers conditional but not chronological directions for associations, it of-
fers information that is complementary to ENA. 

2.2 Association Rule Mining 

Association Rule Mining (ARM) is a data mining technique that identifies associations 
among items or variables within large datasets [6]. ARM primarily seeks to discover 
rules framed as "If → Then" statements. The "If" portion of the rule, known as the 
antecedent, comprises one or more conditions whose fulfillment suggests the likelihood 
of the "Then" outcome or the consequent. For instance, a rule derived through ARM 
might state: If a teacher provides instruction and encouragement, then it is likely that 
the teacher also offers feedback. Though the two methods have many similarities, the 
primary distinction between ARM and ENA lies in the scope of connections or rules 
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they can identify. Standard ENA primarily focuses on the co-occurrence of pairs of 
constructs. In contrast, ARM is not limited to dyadic associations; it can identify rules 
involving multiple constructs. For instance, in the above teacher mentoring example, 
there were two constructs in the antecedent (providing instruction and encouragement) 
and one in the consequent (giving feedback). Thus, ARM can potentially complement 
standard ENA by uncovering associations among groups of three or more constructs 
that co-occur within a defined conversation. 

Additionally, the rules identified by ARM are not necessarily symmetrical, offering 
further insight into the relationships between the two or more constructs being consid-
ered by the rule. For example, the rule "If (teacher provided encouragement) → Then 
(teacher offered feedback)" might be more prevalent than its inverse, where the ante-
cedent and consequent are swapped. In this example, ARM does not necessarily iden-
tify those cases where Instruction occurred chronologically before Offering Feedback, 
as ONA [20] would recognize. This association rule specifically states that the teacher 
consistently Offered Feedback when Providing Encouragement. But note that this is 
different from discovering that the teacher consistently Provided Encouragement when 
Offering Feedback. Furthermore, none of these patterns depends on the chronological 
order. It is possible for some constructs (consequents) to consistently be associated with 
others (antecedents) without the reverse being true, or without having a unique chron-
ological/temporal association between them. In this way, the nuanced understanding of 
conditional rules provided by ARM expands upon what can be learned from the paired 
associations displayed in standard ENA and the chronological/order relations displayed 
in ONA.  

An alternative method, Sequential Pattern Mining (SPM, [21]), was proposed to an-
alyze antecedent-consequent relationships while also accounting for their sequential 
order. Like ONA, SPM identifies only items, events, or constructs as antecedents if 
they temporally precede the consequent within a specified timeframe or stanza. The 
choice of ARM versus SPM, like the choice between ENA and ONA, depends on the 
research goals and context. In this article, we focus on comparing ARM to standard 
ENA more broadly rather than focusing specifically on their SPM and ONA variants. 

2.3 Association Rule Mining Metrics 

Building on the conditional and not necessarily symmetric associations identified by 
ARM, a variety of metrics for quantifying the goodness of specific rules have been 
proposed. The two most widely employed metrics are support and confidence. Support 
measures the probability of the co-occurrence of two or more constructs across the en-
tire dataset. For example, when coding different conversations, the support of a rule can 
be calculated as the number of conversations where the 2 constructs appeared, divided 
by the total number of conversations. In the context of a moving stanza (the most com-
monly used aggregation method in ENA for building connections), support might be 
calculated as the ratio of stanzas where the constructs co-occur to the total number of 
stanzas: 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴, 𝐵) =
#𝑆𝑡𝑎𝑛𝑧𝑎𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝐴 𝐴𝑁𝐷 𝐵

# 𝑆𝑡𝑎𝑛𝑧𝑎𝑠
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As it relies solely on co-occurrences and not on conditional probabilities based on 
the presence of either the antecedent or the consequent, support is a symmetric metric 
that reflects the prevalence of an association, preferring common patterns to rare com-
binations. This metric is conceptually similar (though not mathematically equivalent) 
to the connection weights in ENA after normalizing the adjacency vectors to calculate 
relative frequencies of co-occurrence (which divides each component of the vector by 
the length of the vector, scaling the length of the vector to 1), before applying singular 
value decomposition or other dimensionality reduction techniques [10, 11, 19]. 

A second metric, confidence, measures the likelihood that the consequent appears 
when the antecedent is present. It is mathematically calculated as the ratio of the support 
for the co-occurrence of both antecedent and consequent to the support for the occur-
rence of the antecedent alone: 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝐴 → 𝐵) =
#𝑆𝑡𝑎𝑛𝑧𝑎𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝐴 𝐴𝑁𝐷 𝐵

# 𝑆𝑡𝑎𝑛𝑧𝑎𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝐴
=

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐴, 𝐵)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐴)
 

This metric is particularly useful for complementing standard ENA as it adds a meas-
ure of conditional relationship, aiding in the identification of potential asymmetries in 
the associations revealed by both standard ENA and the support metric. 

Beyond confidence and support, additional metrics are used to evaluate association 
rules, such as Cosine, Lift, Jaccard, and Cohen's Kappa [7]. These metrics are collec-
tively referred to as interestingness metrics. Merceron and Yacef [22] suggest that these 
metrics, particularly Cosine and Lift, may be more appropriate for analyzing educa-
tional data than the more commonly used measures of confidence and support. Bazal-
dua and colleagues [23] argue for using Jaccard after taking confidence and support 
into consideration. Given the differences in the sets of rules that interestingness metrics 
can reveal [23], integrating ARM could allow researchers to include more varied met-
rics, uncovering sets of rules that neither support nor standard ENA would detect. Alt-
hough this paper primarily focuses on the traditional ARM metrics of support and con-
fidence to draw on the parallels and differences between ARM and standard ENA, ex-
ploring a variety of metrics could also significantly enhance analysis within ENA. This 
possibility will be further explored in the discussion section. 

3 Methods 

3.1 Dataset & Codebook 

For this research, we utilized transcripts from three tutoring sessions orchestrated by a 
non-profit organization to support mathematics learning for students from high-poverty 
schools in an urban area of the northeastern United States. These sessions were con-
ducted virtually in small groups, with one tutor and one or two students. All participants 
were 9th-grade students enrolled in Algebra I. 

Table 1 presents the codebook used in this study, originally proposed in [24]. Using 
the same dataset we employ in this study (plus an additional small transcript used for 
inter-rater reliability checking), this codebook was created in the process of evaluating 
various methods of incorporating ChatGPT into the codebook-development process. It 
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was developed by prompting ChatGPT for suggestions for constructs to explore teach-
ing methodologies in online tutoring sessions, supplying ChatGPT with the dataset, and 
then by one expert qualitative coder refining ChatGPT suggestions based on their ex-
pertise. 

Table 1. Codebook originally proposed in [24]. 

Construct Definition Examples 

Greeting (G) The initial interaction between the 
tutor and student, often at the be-
ginning or end of the session. Any-
time a salutation or farewell is ex-
changed. 

“Hello.” “Cheers.” “I'll see you in a 
couple of days.” “Enjoy the rest of 
your day.” “Bye.” 

Instruction (I) Specific instructions or directions 
posed by the tutor throughout the 
lesson. 

“So, we’re going to test it out. I'm 
going to have you guys work on 
this do now right here." 
“Go ahead and fill that out.” 

Guiding  
Feedback (GF) 

Guided practice through a math 
problem by the tutor. Feedback on 
the student's work or response and 
clarification or explanation of a 
concept or instruction. 

“Not quite. I'm not sure why you 
have these X's.” 
“No, not quite one x because you 
divided the negative three by three 
but did you divide the x by x?" 

Aligning to 
Prior 
Knowledge 
(PK) 

Instances when the tutor brings at-
tention to a previous math concept 
that a student knows or has dis-
cussed in a session. 

“Remember, what does factor 
mean?” 
“But remember, what's in your pa-
rentheses should be the same if you 
did it right.” 

Check for  
Understanding 
and  
Engagement 
(UE) 

The tutor presents checks for un-
derstanding as questions to stu-
dents. Students answer questions or 
provide input to tutor’s questions. 

Tutor: “How do you figure out 
what's halfway?” “Why do you 
think we might have done that?” 
Student: “We should have negative 
three minus equals four.” 

Technical or 
Logistics (TL) 

Tutor comments related to the 
technical aspects or logistics of the 
lesson. 

“Your camera’s looking at the ceil-
ing.” 
“Did you lose connection?” 

Encouragement 
(E) 

Affirmative statements from the tu-
tor recognizing student's efforts, 
answers, or performance. Anytime 
the tutor provides a positive ac-
knowledgment or praise. 

“Perfect.” “Good job.” “Great.” 
“You're getting it, man.” “We are 
going to get it” 

Time  
Management 
(TM) 

Statements regarding the duration 
left, the need to move on, or how 
much has been covered. Any men-
tion of time, pacing, or the order of 
topics. 

“We have about 5 minutes.” 
“Class is almost halfway over.” 
“This should go fairly quickly so 
we can finish the lesson today.” 
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Barany et al. [24] compared this codebook with three other codebooks derived from 
the same data set, including a codebook developed solely by a human coder, comparing 
codebooks in terms of clarity, ease of use, mutual exclusivity, inter-rater reliability, and 
conceptual overlap. Clarity, ease of use, and mutual exclusivity were measured using 
5-point Likert-scale coders’ rankings after two rounds of human coding, involving a 
new set of coders who had not previously seen the codebook or data. The codebook 
selected for this study showed a higher average rating across these three measures. It 
also achieved higher inter-rater reliability between the human coders. Additionally, we 
engaged in social moderation of the entire dataset [25] by two coders, including one of 
the original coders in the discussion process, to achieve complete agreement. 

3.2 Comparison between ENA and ARM 

To compare ARM and standard ENA, we initially focused on one of the three sessions 
available in this dataset. This particular session was selected because it featured the 
most active interaction between the students and the tutor, providing a rich sample of 
instances for investigating the potential differences in what findings ARM and ENA 
could reveal. 

In our dataset, each line corresponds to a tutor or student sentence. We opted for a 
moving stanza of size 8, based on the typical number of sentences a tutor speaks before 
being interrupted or responded to by a student. Both ARM and standard ENA utilized 
this stanza size to ensure comparability of results. We also experimented with other 
stanza sizes ranging from 6 to 10 (based on the common range of tutor utterances before 
being interrupted or responded to) but did not observe significant variations in the out-
comes. Given that each session was a continuous one-hour block without breaks or 
abrupt interruptions, each session was our conversation variable. 

To facilitate comparison between ARM and standard ENA, and to make the results 
of ARM easier to understand, we developed a new visualization of ARM, Epistemic 
Association Rule Network (EARN), adapting ENA diagrams created using the ENA 
Web Tool (version 1.7.0) [26]. Although past approaches have proposed diagrams for 
visualizing rules found using ARM (e.g. [8, 9]), these visualizations usually focus on 
one consequent as the objective or final node of the diagram or focus only on rules of 
size 2, and mainly consider confidence for displaying the edges of the network. Alt-
hough these approaches have been useful for finding and visualizing the associations 
with a specific target construct, they cannot show a general view of the associations 
present in the dataset, unlike ENA. Additionally, the location of the nodes in these ap-
proaches does not offer the same type of interpretability provided by ENA models. For 
this reason, we preferred to adapt ENA diagrams to incorporate ARM findings rather 
than using these visualizations of ARM. 

In this new visualization, we show the directional associations found by ARM as 
arrows in an ENA diagram. In this adaptation, nodes are located in the same position 
as in the original ENA diagrams to facilitate the interpretation of differences between 
diagrams. The node sizes represent the occurrence probability of each construct, while 
the line width indicates the support of the rules involving these constructs. The direction 
of the edges points from the antecedent to the consequent, based on the rule that 
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maximizes confidence for the specific constructs connected by each edge, thus defining 
the conditional direction of the associations. In cases where the association involves 
more than two constructs, such associations are depicted with dashed curved lines, with 
directionality determined by the rule with the highest confidence. Dashed lines pointing 
in both directions signify that both constructs are part of the antecedent or the conse-
quent of the association. For instance, in the rule involving the constructs Guiding Feed-
back, Checking Understanding, and Instruction (Fig. 1), the highest confidence was 
found for the rule: If (Instruction AND Guiding Feedback) → Then (Checking Under-
standing). This rule is therefore represented by a bidirectional dashed line between In-
struction and Guiding Feedback (antecedent), with additional dashed lines pointing to-
wards Checking Understanding (consequent). In this network (and also in the corre-
sponding ENA), only line weights (lw) or supports greater than 0.2 are included to 
simplify the visual comparison. 

4 Results 

Fig. 1 shows a comparison between the standard ENA model (left) and the EARN 
model (right). Table 2 compares the connections (line weights) observed using ENA 
and the associations identified using ARM. In this initial analysis, standard ENA and 
ARM offer similar insights into the data. In both analyses, the strongest connection was 
found between Guiding Feedback and Checking Understanding (lw=0.917, sup-
port=0.459). This association frequently occurred when the instructor provided feed-
back following a question asked to check students' understanding or when the tutor 
initially offered guidance or feedback and then posed a question to assess understand-
ing. The second strongest connection was found between Checking Understanding and 
Instruction (lw=0.731, support=0.357), suggesting that these constructs also frequently 
co-occurred. 

This is seen in the following fragment where the tutor aimed to teach students how 
to solve an equation with the variable in the denominator: 

Tutor: We always multiply what's in the denominator (Guiding Feedback). So we're 
going to multiply that on both sides, equals two (Instruction). And now, what should 
we do from here now? (Checking Understanding). 

In this fragment, the tutor guided the students to multiply both sides of the equation 
by the denominator, then provided instructions on how to multiply, and subsequently 
asked for the next steps to ascertain whether the students understood the process of 
solving the equation once the denominator was eliminated.  

However, this fragment illustrates a further point: not only does Checking Under-
standing co-occur with both Instruction and Guiding Feedback, but the three constructs 
also frequently appear together. This is captured by the association rule IF Guiding 
AND Instruction THEN Checking, which (due to its much higher support and confi-
dence) indicates that the specific combination of Guiding and Instruction is more indic-
ative of Checking than other combinations of these three constructs. This type of con-
nection involving more than two constructs cannot be directly observed in standard 
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ENA. Although ENA can demonstrate that three constructs have strong pairwise con-
nections, as shown in Fig. 1 and Table 2, it does not imply a collective strong connec-
tion among all three constructs–all it can do is show which pairwise combinations are 
strongest. By contrast, the support metric computed on each possible If→Then combi-
nation of these three constructs indicates a more nuanced relationship between the con-
structs. This result suggests that EARN can offer additional/different insights into the 
co-occurrences of groups of constructs. 

  

Fig. 1. Visual comparison between connections observed using standard ENA (left) and associ-
ations found using ARM (right). Only line weights or supports higher than 0.2 are shown. 

Dashed curved lines indicate associations that involve more than two constructs. Directions in-
dicate the rule with the highest confidence between each group of constructs. 

This ability of EARN to provide If→Then conditional associations is an important 
difference from standard ENA. Although the current version of ENA can display tem-
poral order [20], an aspect also captured by SPM [21], it does not consider conditional 
relationships. In many scenarios, the conditional relationship may be more significant 
than the temporal one. For instance, in the following fragment, the tutor was providing 
feedback on a problem that asked the student to identify fractions that would be unde-
fined under certain conditions: 

Student: I was focused on the numerator. That's why I kept getting them wrong 
(Checking Understanding). 
Tutor: All right. Good job. All right, fellas (Encouragement). I want y'all to try out 
(Instruction). Y'all doing good (Encouragement). [Student Name], the very last one 
is the second one (Guiding Feedback, referring that the last expression was the sec-
ond one of the options that could be undefined). 

Recognizing the importance of encouragement in educational settings, particularly 
during feedback, it is crucial to identify if the tutor is providing encouragement simul-
taneously with feedback, rather than merely determining whether the encouragement 
precedes or follows the feedback. Even if the overall frequency of encouragement and 
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feedback within a session is low (which would result in an ENA visualization that does 
not highlight this connection), it may be useful to understand if tutors are particularly 
likely to encourage students when giving feedback (i.e. the proportion of encourage-
ment is particularly high during feedback instances). Thus, the confidence metric used 
by ARM, which accounts for this conditional relationship rather than focusing on the 
temporal order, can provide valuable nuance to the analysis. 

Table 2. Comparison between connections observed using standard ENA and associations 
found using ARM. Only line weights or supports higher than 0.2 are shown. The rule with the 

highest confidence for each group of constructs is shown in bold. 

Association  
(IF) 

Association  
(THEN) 

Confidence 
(ARM) 

Support 
(ARM) 

Line Weight 
(ENA) 

Guiding Checking 0.843 
0.459 0.917 

Checking Guiding 0.578 

Instruction Checking 0.822 
0.357 0.731 

Checking Instruction 0.449 

Encouragement Checking 0.670 
0.201 0.445 

Checking Encouragement 0.253 

Aligning Checking 0.805 
0.197 0.392 

Checking Aligning 0.248 

Instruction Guiding 0.625 
0.271 0.379 

Guiding Instruction 0.498 

Guiding AND Instruction Checking 0.848 

0.230 – 

Checking Guiding AND Instruction 0.290 

Instruction AND Checking Guiding 0.645 

Guiding Instruction AND Checking 0.423 

Guiding AND Checking Instruction 0.502 

Instruction Guiding AND Checking 0.530 

Determining these conditional relationships is crucial for identifying potential asym-
metries in the co-occurrence of constructs. For example, the confidence levels in the 
rules identified through ARM indicate that if the tutor employed instruction or guiding 
feedback, there was a high likelihood that they were also checking for understanding 
simultaneously (confidence of 0.843 and 0.822, respectively). For instance, in the fol-
lowing fragment, the tutor began by checking students' understanding and, upon not 
receiving a direct response from the student, opted to provide more guiding feedback 
and instructions: 

Tutor: So, we're going to divide twelve on both sides, right? (Checking Understand-
ing). That’s all we are doing (Guiding Feedback). That’s going to help cancel out 
(Guiding Feedback). So, we divide twelve on both sides (Instruction). So now, our 
final answer is going to be x equals sixty-one over twelve (Guiding Feedback). 
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In contrast, the low confidence for the reverse rules (swapping the antecedent and 
the consequent) suggests that checking for understanding does not necessarily mean 
that the tutor was also providing guiding feedback (confidence=0.578) or instruction 
(confidence=0.449). An example of this can be seen in the following example (which 
precedes the previous fragment): 

Tutor: So now, how will we get x by itself? (Checking Understanding) How will we 
solve for x right now? (Checking Understanding). 
Student: So, we uh… 
Tutor: Twelve x is the same as what operation? (Checking Understanding) Addition, 
multiplication, subtraction, multiplication, right? (Checking Understanding). 
Student: Multiplication 
Tutor: So what's the opposite of that? (Checking Understanding). 

In this case, the tutor posed several questions to the student but did not offer any 
additional explanations. Although the confidence measure in both conditional direc-
tions for these rules is still relatively high (all above 0.4), there might be scenarios 
where the If→Then relationship applies distinctly in one direction only. In such cases, 
failing to acknowledge the specific direction of the association could be misleading, 
further illustrating the utility of EARN as an additional approach with potential value 
for QE research.  

5 Discussion & Conclusion 

In this article, we compare association rule mining (ARM) and epistemic network anal-
ysis (ENA) to better understand the additional contribution that association rule mining 
networks could provide to quantitative ethnography (QE) research. Our findings reveal 
that both ARM and ENA produce many overlapping findings, but that the nuanced 
differences between the two techniques can enhance our understanding and analysis of 
the data. 

The first key difference between ARM and standard ENA lies in how they handle 
groups of constructs. Take the situation where multiple pairs of constructs all co-occur. 
In some cases, these pairs may actually represent bigger groups of 3 or 4 constructs that 
regularly co-occur; in others, single pairs can often be seen without the other constructs. 
This is a distinction that standard ENA does not elicit. ARM addresses this gap by 
identifying cases where groups of more than two constructs are highly common, thus 
complementing the analysis that can be done with traditional ENA. 

Additionally, ARM can reveal conditional relationships between constructs that 
standard ENA does not distinguish. For instance, some tutors might frequently ask 
questions to check student understanding but provide little guidance or instructions, 
while other tutors might offer extensive instructions and guidance without directly 
checking student understanding. Although both scenarios might show similar patterns 
of co-occurrence in ENA, ARM can differentiate them by evaluating the conditional 
probabilities of these interactions. In this case, complementing standard ENA with 
ARM enables the development of a more nuanced and effective understanding of the 
relationships between codes, when relationships are asymmetric.  
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Note that this is distinct from the ability of Ordered Network Analysis (ONA) to 
identify antecedent/consequent temporal relationships; ARM identifies conditional re-
lationships rather than temporal relationships. In other words, there are cases where the 
order of events is less important than simply recognizing that if one construct appears, 
another does too (but not vice-versa). In addition, a variant of ARM, named Sequential 
Pattern Mining (SPM; [21]), is widely used to identify temporal relationships while also 
offering the possibility of recognizing groups of more than 2 constructs. Therefore, 
even in those contexts where the order of constructs is more important than their con-
ditional relations, SPM can also offer valuable additional insights. 

In this study, we mainly evaluated association rules using the most commonly used 
metrics within that methodological community: Confidence and Support. However, 
these measures can be disproportionately influenced by constructs that appear very fre-
quently in the dataset. As a result, rules or associations involving these frequently oc-
curring constructs may monopolize the findings, potentially overshadowing other re-
sults that could be more insightful for researchers.  

This risk also exists in standard ENA. As with the Support metric, standard ENA 
models count the occurrences of each connection, which are then normalized across 
each adjacency vector by dividing each number of co-occurrences by the magnitude or 
norm of the adjacency vector. Consequently, a construct that appears frequently overall 
is likely to have more connections with other constructs, and this prevalence remains 
even after normalization. This is the main reason for the strong similarities between the 
line weights of standard ENA models and the Support metric (in fact, Pearson’s R is 
0.959), both of which are heavily influenced by a construct’s overall rate of occurrence, 
making it challenging to determine whether there is an actual association between con-
structs and sometimes potentially leading to trivial findings (e.g. overemphasizing con-
nections between the most common constructs).  

Although the QE community has tried to mitigate this issue by considering different 
projections, rotations, and visualizations, and particularly by continually referring back 
to the actual data to close the interpretative loop when using ENA, the ARM community 
has addressed the issue by proposing alternative metrics, typically referred to as inter-
estingness metrics [7]. For instance, Merceron and Yacef [22] recommend calculating 
interestingness metrics that go beyond the commonly used Confidence and Support, 
specifically suggesting Cosine and Added Value (similar to Lift) for each association 
rule as a way to identify the most relevant rules. Cosine is similar to Support, but differs 
because it checks if an association exists due to the frequent occurrence of certain items 
together rather than just due to a high individual frequency of any of the constructs [22]. 
As a quick note, the metric referred to as Cosine by association rule mining users should 
not be confused with the Cosine Normalization used in epistemic networks [10], which, 
as mentioned before, has a mathematical definition closer to Support and shares similar 
limitations. Similarly, Added Value and Lift go beyond Confidence by assessing 
whether a strong association exists between two items or is merely a result of the high 
occurrence rate of the consequent or Then part of the association rule [22]. Bazaldua et 
al. [23] have also argued for other metrics, such as Jaccard, by identifying which inter-
estingness metrics correlated with the rules that human researchers actually report as 
being most interesting among rules with high Support and Confidence, suggesting again 
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the need to go beyond these two metrics. Interestingness metrics can therefore provide 
further valuable quantification of the association between multiple constructs and high-
light different relations. 

As demonstrated here, it is feasible to create representations (Epistemic Association 
Rule Networks; EARN) by utilizing the initial rotations and visualizations from stand-
ard ENA and then drawing edges based on ARM. Additionally, these metrics can be 
considered not only for modifying existing ENA model visualizations but also for gen-
erating new versions of them. For example, it is possible to replace ENA’s adjacency 
vector with a vector defined by a chosen interestingness metric, instead of merely 
counting co-occurrences. This approach allows the resulting ENA visualizations to po-
sition nodes and assign line weights in a manner that can highlight connections that are 
not mainly explained by a high frequency of a single construct and might be more rel-
evant for researchers. 

Furthermore, EARN can be used to develop difference models, as is commonly done 
in standard ENA [11]. In this approach, the researcher can develop individual models 
using any ARM metric and then subtract them to create difference models. This is al-
ready commonly done (without the visualizations used in the QE community) by the 
Differential Sequence Mining algorithm [27]. In the models we propose here, nodes 
can be positioned according to standard ENA, while the edges could highlight the dif-
ferences in two models based on the chosen interestingness metric.  

In conclusion, although standard ENA offers a wide range of possibilities to analyze 
patterns embedded in discourse data, ARM can provide complementary analysis by 
providing additional nuance about the associations between constructs within the data 
that might be helpful for researchers. Tools like WebENA and rENA [26, 28], widely 
used in the QE community, could also incorporate some of the ideas discussed in this 
paper to offer more types of functionality to QE researchers to help them develop an 
even deeper understanding of their data. Moreover, researchers who usually use ENA 
can also explore some of the tools, metrics, and techniques commonly used by the ARM 
community to complement their QE toolbox. Considering both approaches can there-
fore help to enrich QE research and discussions. 
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