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Abstract. There exist several online applications for automated testing of the 

computer programs that students write in computer science education. Use of 

such systems enables self-paced learning with automated feedback delivered by 

the application. However, due to the complexity of programming languages, even 

the easiest tasks made available through such systems require understanding of 

several programming concepts and formatting. Therefore, a student’s initial work 

in an introductory computer science course may be highly challenging, especially 

for students with no previous programming background.  

To address this challenge, a highly-decomposed micro-task module has been 

developed and made available on an automated assessment platform with pro-

gramming assignments. Impact of its introduction has been examined within an 

introductory programming university course with 239 participants. We investi-

gated the micro-task module’s impact on student affect, student performance on 

the platform, and student learning outcomes. Results of the experiment show that 

students in the experimental group (with micro-tasks enabled) significantly less 

frequently reported frustration, confusion and boredom, needed less time to solve 

tasks on the platform and achieved significantly better results on the final test. 
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1 Introduction 

Despite decades of research on helping students learn how to program [1, 2], many 

introductory students do not advance to more complicated topics and coursework [3]. 

Even when supported by educational tools and scaffolds, students with no programming 

background struggle in the first weeks of the course [4], where the complexity requires 

students to self-regulate through the acquisition of several cognitive skills that are in-

troduced simultaneously [5-7]. These courses are also difficult to plan for because of 

their heterogeneous student populations. While some students have never programmed 

before or have only used graphical programming languages such as Scratch, other stu-

dents have more experience. Intelligent tutoring systems (ITS) could be of help to these 

problems. However, developing ITS for this domain seems to be a challenge. A review 
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of intelligent tutoring systems for programming [8] finds only one example of an intel-

ligent tutoring system for a modern programming language in the years since 2010 [9]. 

By contrast, the number of automated assessment platforms used in computer sci-

ence education constantly increases [10]. The purpose of these platforms is to actually 

execute the code created by the student against a set of several test cases to provide 

immediate feedback on its correctness. Educational benefits often result from the fact 

that they may be used as a guide that helps students track if they are achieving their 

learning goals, simultaneously providing teachers more insight into student progress 

[10]. 

However, even when immediate feedback is available, students who do not under-

stand why things have been marked as incorrect, may experience confusion, frustration 

or anxiousness and these negative affect states can negatively impact student outcomes 

[11-13]. If key aspects of intelligent tutors could be embedded into these platforms, it 

might be a feasible way to improve student outcomes. In this paper, we investigate a 

tool that breaks down the earliest steps of learning to program using micro-tasks (much 

like the earliest ITS for programming [1]), embedded within a test suite platform. We 

conducted a controlled experiment to investigate whether adding the micro-tasks to the 

test suite platform improves student learning and affect. 

2 Methods 

The online platform with the micro-tasks module. The online application RunCode 

[14] is a platform for automated execution and testing of programming code. It has been 

used since 2017 by students of computer science at the Warsaw University of Life Sci-

ences. Usage of the platform is not mandatory, but students willingly use it (91% in 

Winter Semester 2021-2022). The RunCode app provides students with 146 program-

ming tasks covering the following programming topics: types and variables (33), con-

ditional statement (25), recursion (28), loops (17) and arrays (43). When a student sub-

mits a solution (programming code) to the task, the code is compiled, and tested. The 

student is then provided with several types of feedback, including the total score, the 

information from the compiler (if the code didn’t compile) and detailed results for each 

test case executed on the submitted code (if the code compiled). 

Most programming assignments in introductory courses require students to write 

several lines of code so that a program is ready to be executed against a defined set of 

test cases. With every line, statement, operator and punctuation, the complexity of the 

code increases. When faced with so many programming language components, students 

may find it hard to keep track of each detail of the created code. To prevent this prob-

lem, the platform provides students with a micro-tasks module designed to improve 

their understanding of a particular (single) element of programming code in more detail. 

Micro-tasks are coding tasks that focus on one particular aspect of the code and usually 

require the user to enter only one line of the code. They are designed to help students 

understand how different programming components work one-by-one. To achieve that, 

the line of code entered by the student is combined with a larger code structure. If the 

line of code is not correct, the student receives feedback on that specific element, in 
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order to help them relate the errors that occurred to that one element being tested at the 

time. In contrast, when writing larger pieces of code, even a small syntax mistake may 

lead to a large number of compiler errors, which makes understanding the dependencies 

in the code much more difficult.  

A total of 103 micro-tasks were created, spanning the topics of: types and variables 

(46), conditional statement (7), recursion (23), loops (9) and arrays (18). In the follow-

ing sections, we use micro-task only when referring to a programming task that is made 

available in the introduced micro-task module. An example of such a task could be: 

“use the = operator and assign an appropriate value to the variable age.” We refer to all 

the regular coding tasks available on the platform as a task. An example of such a task 

could be: “create a function that returns true if a given number is odd.” To evaluate the 

impact of the micro-tasks module introduced to the system, students were randomly 

assigned to a control or experimental group. Sets of tasks for each topic were published 

later in the day after the corresponding classes. Students in the control group could 

access tasks on the platform immediately after they were published. For the experi-

mental group, access to the main tasks was unlocked after solving a set of micro-tasks. 

Micro-tasks were not available to students in the control group. 

Participants. This study’s participants consisted of first-semester computer science 

students (N=276) taking the Introduction to Programming course in Winter Semester 

2022-2023 at the Warsaw University of Life Sciences. This course is required for com-

puter science students at this university. The programming language used in this course 

is C#. A total of 239 students (28% female) consented to participate, with 174 submit-

ting at least 1 solution on the platform during the study period (86 students in the control 

and 88 in the experimental group). In total, 31,011 submissions were collected (7,284 

micro-tasks, and 23,727 regular programming tasks). In addition to these tasks, data 

consists of a single-item self-assessment of skills, results of the pre-test conducted dur-

ing the first class session and the post-test conducted during the 10th class session.  

Self-Assessment of Skills: novice and experienced programmers. During the first 

class session, students rated their level of knowledge on basic programming topics. 

Students were prompted, “Please rate on the scale 1 to 5 (where 1 – no knowledge at 

all and 5 – very good knowledge) your knowledge level for these topics taught in this 

course: types, variables, conditional statement, recursion, loops and arrays.” Based on 

the self-assessment data, students were split into two groups: a “novice” group of stu-

dents who reported their skill level as 1 and 2 (N=121; 59 experimental, 62 control) and 

an “experienced” group of students who self-reported a skill level of 3 and above 

(N=118; 54 experimental, 64 control). These values were selected to split students 

roughly evenly between the two groups. In the following sections we will refer to these 

groups as novice programmers and experienced programmers. Directly after the self-

assessment, students were administered a pre-test to assess their knowledge level in a 

more objective manner. The test contained 8 multi-choice questions referring to the 

basic concepts taught during the course. The test questions were designed in a program-

ming language-agnostic way, to take into account different programming languages 

that students may have previously learnt. The post-test was administered during the 

10th class session, after all the relevant topics had previously been introduced during 

classes. The post-test contained 9 multi-choice questions. 
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Affective state while using the platform. Students self-reported their affective 

states while solving tasks on the platform through a dynamic HTML element. They 

were prompted to do so after they received submission results with the question: 

“Choose the option that best describes how you feel at the moment” with the following 

response options: Focused, Anxious, Bored, Confused, Frustrated, Other (in this order) 

and appropriate emoticons to visually highlight each of the available responses. This 

set of affective states was chosen based on their importance for learning and history of 

past research in AIED [12]. To avoid frustration that could arise from being required to 

fill out the survey too frequently, it was not presented after every submission, but ran-

domly, with a probability of 1/3. 

3 Results 

Affective states. The most frequently reported state during regular programming tasks 

in both conditions was focused (more than half of collected responses in both condi-

tions). A total of 6,051 survey responses were collected (experimental: 3,063, control: 

2,988) from 128 students (experimental: 64, control: 64). Non-parametric Mann-Whit-

ney U tests were calculated to compare differences in the frequencies of the affective 

states reported by each student (during regular programming tasks), due violation of 

normality assumptions. Due to multiple comparisons, the Benjamini-Hochberg alpha 

correction was used. Three affective states showed significant differences between con-

ditions. For boredom, students in the experimental group reported marginally lower 

rates (Mdn=0) than those in the control group (Mdn=0.0139), (W=1566.5, adjusted 

α=0.01, p=0.0125, for a non-parametric Mann-Whitney U test). The same was true for 

confusion, where the experimental group (Mdn=0) was marginally significantly lower 

than for the control group (Mdn=0.007), (W=1641.5, adjusted α=0.02, p=0.029, for a 

non-parametric Mann-Whitney U test). Frustration followed the same pattern with the 

experimental group (Mdn=0) reporting marginally significantly lower rates than the 

control group (Mdn=0.03), (W=1674, adjusted α=0.03, p=0.053, for a non-parametric 

Mann-Whitney U test). Focus and anxiety, however, did not show significant differ-

ences between conditions. The experimental group reported a median that was not sta-

tistically significantly different from the control group (Mdn=0.72 vs Mdn=0.52), 

(W=2236, adjusted α=0.05, p=0.369, for a non-parametric Mann-Whitney U test). The 

same was true for anxiety (Mdn=0 vs. Mdn=0.02), (W=2236, adjusted α=0.04, p=0.149, 

for a non-parametric Mann-Whitney U test). 

Learning outcomes. To evaluate the impact of the introduced micro-task module 

on the post-test outcomes, we used a rank-based regression [15] (a non-parametric al-

ternative to traditional likelihood or least squares estimators) used to test whether the 

pre-test and group significantly predicted the post-test results. The pre-test was a sta-

tistically significant predictor of the post-test, t(236)=14.53, p<0.001. The group was a 

statistically significant predictor of the post-test as well, t(236)=2.35, p=0.02; on aver-

age, students in the experimental condition performed 5.08% better on the post-test 

after controlling for pre-test. For novice programmers, the pre-test was a statistically 

significant predictor of the post-test, t(118)=3.50, p=0.001. The group was also a 
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statistically significant predictor of the post-test, t(118)=2.07, p=0.04. In the group of 

novices, students in experimental condition performed on average 5.67% better on the 

post-test after controlling for pre-test. For experienced programmers, pre-test was again 

a statistically significant predictor of the post-test, t(115)=6.07, p<0.001, but group var-

iable was not a statistically significant predictor of the post-test, t(115)=0.89, p=0.373.  

Platform usage. Within the experimental group, the time spent by novice program-

mers on micro-tasks (Mdn=190.47 min.) was significantly higher than experienced pro-

grammers (Mdn=103.27 min.), for a non-parametric Mann-Whitney U test (W=1406, 

p=0.003). To evaluate differences between students in the control and the experimental 

group in terms of time spent to solve tasks on the platform, we analyzed 7391 successful 

student attempts on tasks during the study period and evaluated the time students in 

both conditions needed to solve tasks. In doing so, we omitted tasks which fewer than 

3 students successfully completed in each condition. Some students ceased work on a 

task without logging out; due to the fact that the platform does not monitor the key-

stroke-level data, a cutoff has been defined for tasks that have not been solved within 

the time of 2000 seconds (~33 min.). The vast majority of student attempts on tasks 

ended with a successful submission within that time (but several successful attempts 

were still in the 30-33 minute range). The time needed to completely solve each task 

was significantly lower for the experimental group (Mdn=3.17 min.) than the time for 

the control group (Mdn=4.7 min.), W=1765.5, p<0.001, for a non-parametric Mann-

Whitney U test. The time needed by novice programmers to completely solve each task 

was significantly lower for the experimental group (Mdn=3.45 min.) than for the con-

trol group (Mdn=4.98 min.), for a non-parametric Mann-Whitney U test (W=468.5, 

p<0.001). The time needed by experienced programmers to completely solve each task 

was marginally significantly lower for the experimental group (Mdn=3.3 min.) than for 

the control group (Mdn=3.8 min.), for a non-parametric Mann-Whitney U test (W=404, 

p=0.053). 

4 Discussion 

The results of the experiment show that students in the experimental group (micro-

tasks enabled) were less likely to report frustration, confusion and boredom, needed 

less time than students in the control group to submit a correct solution to a program-

ming task, and achieved better results on the post-test overall. However, the benefits of 

the micro-tasks for learning were clearer for students declaring no previous program-

ming experience than for students with past experience. This finding indicates that not 

all students need the micro-tasks, suggesting that it may be best to provide them on the 

basis of self-report of expertise or, better yet, based on automatically inferring which 

students are likely to need them from initial within-system performance.  

Limitation of this study is that we only studied impacts during the first ten classes of 

the semester; future work should study the impacts of micro-tasks over a longer time 

period. Finally, future work should study interventions of this nature in a broader se-

lection of universities and introductory programming language, to establish generaliza-

bility. Overall, this initial evidence suggests that incorporating micro-tasks into 
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introductory computer science platforms may have benefits both for learning and affect, 

potentially increasing the number of students who succeed in introductory courses and 

continue further into CS programs. 
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