
PILOT: An Interactive Tool for Learning and Grading
Senior Thesis, Presented May 1, 2000∗

Ryan Shaun Baker
Brown University
rsb@cs.brown.edu

Abstract

We describe an interactive system, called PILOT, for
testing computer science concepts. The strengths of
PILOT are its use as an algorithm visualization tool,
its ability to test algorithmic concepts, its support for
graph generation and layout, its automated grading
mechanism, and its ability to award partial credit to
proposed solutions and give meaningful feedback where
appropriate. We also discuss issues involved in its use
in the classroom, and some empirical results we have
obtained through that usage.

1 Introduction

Online testing systems can be useful in distance learn-
ing, virtual universities, and online classes, and several
systems that allow for online testing have been devel-
oped in the last decade (e.g., see [9]). Such systems
tend to support multiple-choice questions, which pro-
vide a natural class of questions that can be automati-
cally graded online. While such questions can be used
to provide useful measures of student learning, we be-
lieve there are significant additional learning and test-
ing opportunities available that have yet to be fully ex-
ploited. Through the use of some of the technologies of
Intelligent Tutoring Systems (ITS) and Algorithm An-
imation, such systems can be made considerably more
useful and powerful. In particular, we believe that these
systems can be extended to include more sophsticated
questions such as “execute-this-algorithm” questions, a

∗Research supported in part by the National Science
Foundation under grants CCR-9732327 and CDA-9703080,
and by the U.S. Army Research Office under grant DAAH04-
96-1-0013.

a type of homework problem assigned many lower-level
Computer Science classes, and that we can, for this
sort of problem, test students’ answer creation abili-
ties rather than simply their answer choosing abilities.
In addition, online grading also provides fast and con-
sistent grading, provably correct solutions, and point-
ers to information relevant to the question. Moreover,
online grading also makes it feasible to assign differ-
ent problems to different students and still grade each
problem efficiently, thus reducing issues of cheating and
plagiarism. It also allows students to practice with a
virtually unlimited number of different problems, far
more than a teaching assistant staff could conveniently
create. Algorithm Animation can be used to provide
support for students whose learning styles tend towards
visual learning, and to provide students with a model
of a correct answer process.

We are therefore interested in interactive online auto-
mated grading tools that aid student learning and test
answer creation abilities, not just answer choosing skills.
In addition, we are interested in the visualization of
questions, errors, and answers.

My specific contributions and enhancements to the ver-
sion of PILOT discussed in the earlier conference paper
[8] are as follows:

1. The addition of interactive feedback while the student
is learning the algorithm

2. The use of algorithm animation techniques for several
purposes, including demonstrating the correct func-
tioning of an algorithm and demonstrating to a stu-
dent how their answer was incorrect both as the stu-
dent is learning the algorithm and during grading.

3. The preparation of PILOT for its first use in CS016,
including security issues

4. Conducting the empirical research discussed below,
including designing the problems used in both PILOT
and the traditional homework, implementing the log-
ging features within PILOT to gather the other data,
and statistical analysis.



1.1 Previous Work

Several previous software systems have been designed
with online testing in mind [15, 16]. Blackboard.com [4]
provides automatic grading for quizzes with multi-
ple choice and true/false questions. Systems such as
QUIZIT [21], WebCT [22], and ASSYST [13] have been
designed to perform online testing of answers whose cor-
rect syntax can be specified as regular expressions. Pre-
vious systems that allow for richer types of answers have
needed assistance from the course graders and the in-
structor to perform the actual answer checking. In addi-
tion to the difficulty of dealing with sophisticated forms
of answers, another area where these previous systems
have trouble is in their lack of ability to provide partial
credit to answers that are “almost” correct.

There has been considerable research into the question
of interactive and intelligent tutoring systems. The
earliest tutoring systems (called CAI, for Computer
Aided Instruction) simply provided immediate, inter-
active feedback to their users after they completed a
given problem. This help varied from simply telling the
user whether they were right or wrong to sophisticated
explanations and animations. First-generation Intelli-
gent Tutoring Systems (ITS), produced in the 1970s
and 1980s, used Expert Systems to analyze the steps to-
wards a correct solution in comparison to the steps the
student chose [18]. Later ITS used sophisticated mod-
els of student understanding and utilized artificial in-
telligence to determine what sort and difficulty of prob-
lems to offer to students – one example is the tutors
produced in the Advanced Computer Tutoring Project
at Carnegie Mellon University[10]. Ongoing research
on ITS addresses many possible improvements, such as
how tutors must adapt to the needs of different students,
software engineering and ease of use concerns, and the
possibility of “third-generation” tutoring systems which
engage in natural language dialogue with students.

Since our notion of answer specification and checking
involves a strong visualization component, it is also
related to previous work on the visualization of algo-
rithms and data structures. There is a rich literature
that describes the benefits of concept visualization in
education settings. Algorithm animation has been suc-
cessfully used for visualizing graph algorithms, sorting,
and searching, to name a few examples [20]. Similarly,
program code animation also helps in the learning of
new programming languages. Finally, concept anima-
tion has also been successful in communicating difficult
concepts such as finite state automata [6]. Tools for cre-
ating animations of data structures and algorithms have
also been developed [19]. Interactive tutorials have been
designed and their positive impact on student learning
evaluated [3]. Electronic books have been proposed and
developed, in which hypertext, interactive animations,

audio and video parts are integrated in a web-based
standalone educational resource [5].

1.2 Our Results

We have designed PILOT with several goals in mind.
First, we would like to offer an interactive tool that
can be used in class to aid in exposition. Furthermore,
there are numerous problems that students learn best
by example, and we would like a tool that can gener-
ate random instances of a problem and allow the stu-
dent to create the solution online. Finally, we would
like to allow for instant feedback as the student learns
the algorithm and automated grading when the student
completes a problem for a grade. Thus, PILOT allows
for:

• generation of interesting random instances of a
problem

• user interaction to specify a solution
• online submission of solutions for evaluation
• evaluation of solutions, providing a score and com-

ments
• generation of correct solutions to the problem

At this time, PILOT supports graph problems such as
finding the minimum spanning tree (MST) through
Kruskal’s algorithm and Prim’s algorithm.

Another very important feature of PILOT is the detailed
feedback it can give the student either as they work the
problem or while it grades the problem. For example, in
creating a MST, if an edge is chosen incorrectly, PILOT
will highlight the edge in red, inform the student how
that choice was incorrect, and, as appropriate suggest
how the student could improve their choice.

As currently written, PILOT can be securely used to
grade homework either with a TA designated problem
or a randomly generated problem. Grading automa-
tion has the potential to save a large amount of TA
effort, especially in a large class. In the Spring of 2000,
PILOT was used in homework in Brown University’s
Data Structures and Algorithms class, CS016. Our ex-
periences were quite positive.

2 Using PILOT

In the current scenario, the user chooses a problem type
and mode from pull-down menus and clicks the “gener-
ate” button to create a random instance of that prob-
lem. Figure 1 shows the result of generating an instance
of MST-Prim — a minimum spanning tree problem to
be solved using Prim’s algorithm. For MST-Prim, the
user is to execute Prim’s algorithm, starting with the
vertex marked “start”; the solution is a numbering of
the edges in the order in which they were added to the
MST. To indicate the solution, the user clicks on the
edges, in order, belonging to the MST. They have un-
limited levels of undo and redo to allow them to change



Figure 1: randomly generated graph for MST-Prim

their solution if they realize it is incorrect.

The student can place PILOT into three different modes
of interaction. In the Learn mode, the student executes
the algorithm, and after every step PILOT checks to see
if that step was correct. If not, a message is generated
and in some cases an animation displayed, informing
the student how they were wrong. The student then
has the option of undoing to try again or pressing on
with the algorithm.

In the Exam Practice mode, the student creates their
solution with no feedback (figure 2), and then, once the
user is satisfied that she has entered the correct solution,
clicking the “check” button will correct and grade the
solution. (figure 3) The system will go through each
of the student’s actions in turn, explaining where and
why the student’s choice was incorrect. After it has
finished, it gives an overall explanation of the student’s
performance, including the type of errors made, and a
detailed grade breakdown (as shown in figure 4).

In the Learn and Exam Practice modes, an animation of

the problem being solved can be obtained at any point
by clicking the “solve” button. This allows a student
unable to figure out what to do on a specific problem
to see what to do.

The Exam mode is intended for students to use to sub-
mit a solution for a grade. When the student clicks to
check the problem, the student’s solution and perfor-
mance is immediately logged in a place where it can be
retrieved by a TA.

3 User interface

One extremely important part of any educational soft-
ware package is its user interface. The best intentioned
project will be quite useless if students cannot figure out
how to use it. In designing our user interface, we have
attempted to be sensitive to the problem of different
learning styles. Since some students learn better with
symbolic and natural language feedback whereas other
students learn better from graphics and animation, we
have attempted to accomodate both groups of students
by giving simultaneous feedback of both types.



Figure 2: A student’s answer

For the overall layout of PILOT we chose an approach
similar to that used in a previous project, the JDSL
Visualizer[1]. The JDSL Visualizer had one main win-
dow, which held the structure which the user interacted
with and buttons to make changes to the structure.
That main window also had a sub-window for the his-
tory of the structure and the student’s actions. Menus
in the main window allowed the student to create a new
structure or to switch between structures. Smaller win-
dows held messages from the JDSL Visualizer to the
user, and help text.

In PILOT we chose much the same approach. A large
window contains the structure and allows the user to
interact with the structure. Smaller windows held mes-
sages from PILOT to the user and a tutorial to help the
students use PILOT. One difference is that the mes-
sage window is also used by the student to undo and
redo (thus putting history-keeping there), and to step
through animations and grading. We chose this because
the student will be looking at the messages in that win-
dow when they choose those actions. Examples of the
main window and the message window can be seen in
figure 3.

The student highlights an edge by clicking it or its edge
weight label – this allows the student to see the edge and
its weight more clearly (and also eliminates any danger
of ambiguity in which label refers to which edge). Then
the student can add it to their solution by clicking on

it again. The student can remove it from their graph
by clicking undo. The student can also drag vertices
around to improve the readibility of the graph (see the
further discussion of this in section 4.1).

The main window relies in part on code created by
Robinson Mason in his Graph Editor[17]. This ap-
proach allowed us to implement PILOT more quickly,
since many of the essential tasks of displaying a struc-
ture (such as converting an abstract drawing of a graph
to boxes, lines, and circles on a screen) and of interact-
ing with such a structure (recognizing clicks and drags
on those objects) were already handled by the Graph
Editor. One unexpected drawback to this approach
comes with the use of older, “legacy” code – the Graph
Editor was written in an older graphics library, BONGO
[14], which has not been maintained by its implemen-
tors in three years (an eternity in the history of JAVA).
Because BONGO is not fully compatible with newer
versions of JAVA, we needed to use older virtual ma-
chines to run PILOT, making it necessary to use older
versions of some software packages such as JDSL, the
Library of Data Structures for JAVA [12]. We also found
that we had to cope with a number of documented bugs
in JAVA virtual machines which had published fixes in
later versions of JAVA.



(a) Main window

(b) Message window

Figure 3: In the process of grading the student’s solution

Figure 4: The student’s final grade for this graph



3.1 Algorithm animation in PILOT

Algorithm Animation has been used in PILOT in several
areas. The most substantive is in allowing the student
to see an animation of the problem at hand being solved.
As previously mentioned, if the student is having too
much difficulty solving a specific problem, they can (so
long as they are not working that problem to turn in for
a grade) click a button to request such an animation.

In the case of Prim’s algorithm, at each step of the algo-
rithm’s execution, the edges that connect to the span-
ning tree thus far are highlighted in orange – the edge
among those with the lowest weight is highlighted in
green. Those edges are also detailed in a message win-
dow, allowing users who prefer a linguistic explanation
to gain the same information (see figure 5).

Another area where animation has been added is during
PILOT’s Learn mode. In this mode, when the student
chooses an incorrect edge while executing the algorithm
– the edge they chose turns red and in some cases there
is animation. One instance is upon the choice of an edge
of non-minimal weight – an edge they could have chosen
with lower weight will flash momentarily in blue and a
message posted (see figure 6). Another instance occurs
when the user has created a cycle – in this case, each of
the edges along the cycle is flashed blue in turn.

A third area where animation has been added is dur-
ing the grading of a student’s solution in the exam and
exam practice modes. Rather than just returning an
itemized explanation of how the student performed (as
in the version discussed in [8]), it goes through the solu-
tion step-by-step, animating incorrect choices as in the
learning mode.

Thus, Algorithm Animation is used in PILOT in two
ways: to provide a quick illustration of how the problem
should be executed and to add support for students who
learn visually rather than verbally in PILOT’s interactive
learning mode and during grading.

3.2 The use of color

Color is an important tool in any user interface – it
can add considerable information if used properly, but
can be confusing or misleading if misused. We have
attempted to use color to add information and context
to PILOT in the following ways:

1. During animation to indicate incorrect edges, the
edge the student should have chosen, the pieces of
a cycle, and possible choices the student could choose
when PILOT is demonstrating a solution.

2. By changing edge colors depending on whether they
are highlighted, added to the tree, correct, and incor-
rect.

3. By changing a vertex’s color once it connects to the
tree.

Although these additions are important, and are helpful
to students, it is important to realize that some students
may have partial or complete color-blindness. There-
fore no information should be transmitted through color
alone. All color-transferred information is duplicated
by text messages. Furthermore, we provide support
for color customization, to allow adjustment away from
difficult-to-see colors, or adjustment of color intensity.
The student who wishes to change their colors scheme
needs only to modify a provided dotfile and place it in
their home directory.

4 PILOT Architecture

PILOT uses a client-server architecture, and uses Geom-
Net [2] to support some of its functionality. In the Ge-
omNet model, the client is responsible for maintaining
the user interface and all of the algorithm-related com-
putation is done on the server. For PILOT, the client is
implemented as a Java application and the server side
handles the generation and drawing of the problems.
The main motivation for choosing the client-server ar-
chitecture in these cases was flexibility — the server is
not limited to running Java programs, making it possi-
ble to take advantage of existing tools. The graph gen-
erator, for example, uses the Graph Drawing Server [7]
component of GeomNet to compute a layout for the au-
tomatically generated graphs. The server can be run
either remotely or on the same machine as the client –
running locally can be more demanding on slower ma-
chines but eliminates network delays as a run-time fac-
tor.

We do not use GeomNet for PILOT’s interaction, feed-
back, and grading. Instead, we place those components
on the client side. Although this reduces modularity, it
eliminates the danger of a huge numbers of transactions
flying back and forth between client and server, causing
considerable slowdown.

We now look at the graph generator and interac-
tion/grading components of PILOT in more detail, fo-
cusing on minimum spanning tree problems as an exam-
ple; the problem solvers are straightforward implemen-
tations of the appropriate problem solving algorithms
and are not considered further.

4.1 Graph Generator

The graph generator uses a method similar to that
of [11] to generate “realistic” graphs for experimental
purposes. Graphs are built from a single vertex by re-
peatedly applying three operations — (1) insertion of
a vertex and a random number of adjacent edges, (2)
insertion of an edge between two existing vertices, and
(3) splitting of an existing edge by replacing it with a



(a) Main window

(b) Message window

Figure 5: PILOT here seen solving a problem for the student.



Figure 6: The user has chosen an edge of non-minimal weight.

new vertex and two new edges. Graph properties such
as the ratio of edges to vertices can be controlled by ad-
justing probabilities assigned to each of the operations
and the degree of newly inserted vertices.

After the graph has been generated, it is then layed
out by an appropriate graph-drawing algorithm. After
considering many alternatives, we chose GEM, a force-
directed program written in C, for its relatively quick,
well-spaced, and easy-to-read drawings. Using Geom-
Net and the Graph Drawing Server will allow users of
PILOT on different platforms to still use GEM’s draw-
ings, despite the fact that GEM is platform-specific
(running in UNIX), by placing the server on a UNIX
machine.

The graph is then passed to the client, where it is
drawn onscreen. Students can at this point drag ver-
tices around the screen to improve the graph’s readabil-
ity. Edges are pulled along with the vertex – see figure
7 for an example of this.

4.2 Grading and Interaction

There are three main challenges in checking the cor-
rectness of a student’s solution of an algorithm: han-
dling non-unique solutions, assigning appropriate par-
tial credit, and returning meaningful feedback.

There are several possible ways to design a checker for
MST-Prim. It is relatively easy to compute a solution

to the entire problem and compare the user’s input to
it, returning a grade based on how many of the edges
are the same. However, this approach runs into prob-
lems when the solution is not unique, since the user
may have a correct solution but be marked wrong be-
cause the system generated a different one. Non-unique,
very different solutions can easily occur in MST prob-
lems when multiple edges have the same weight. Some
handling of non-uniqueness is possible, such as accept-
ing alternate edges of the same weight, but this does
not address the large changes to the ordering of a so-
lution that can arise from switching one edge – if we
were solely concerned with whether the student could
generate a correct MST, this would not be a problem,
but it is not appropriate where we are concerned with
their process of creation, and thus their ordering.

Additionally, it is not appropriate for problems where
an early mistake can be compounded. For example,
if the user chooses the wrong edge in the first step of
Prim’s algorithm but otherwise executes the algorithm
properly, the one mistake may cause several other edges
to be selected incorrectly. It is unfair to penalize the
user for every edge that is wrong since it was actually
only one mistake, and the system’s comments may be
similarly misleading. Additionally, it is very diffuclt to
generate meaningful feedback with this scheme, since
it cannot differentiate between different types of errors,
and to assign more sophisticated partial credit which



(a) Before

(b) After

Figure 7: Dragging a vertex to a more appropriate location



addresses the varying importance of different sorts of
errors.

A better approach is to verify properties of the user’s so-
lution, to ensure that it is valid. One such approach for
checking an MST would be as follows: for each edge in
the MST, that edge should be the lowest-weight edge of
any connecting the two vertex partitions created by the
removal of the edge from the spanning tree. Each time
an edge violates this property, it is marked incorrect
and the appropriate replacement edge can be indicated
to the user. Partial credit can be assigned according to
the number of incorrect edges. (If the user’s input is
not a spanning tree, cycles are broken by removing the
highest-weight edge in the cycle and trees are joined by
adding the lowest-weight edge between the trees. The
checker then proceeds with the spanning tree produced,
adding an additional penalty for non-tree input.)

This approach partially addresses the problem of mean-
ingful comments and partial credit, but still does not
address the situation where early mistakes can be com-
pounded. An additional problem with this approach is
that it grades the student’s final solution rather than
the process the student went through to get that an-
swer. This means that it is vulnerable to errors where
the student ended up with a correct result but did not
apply the algorithm properly, adding edges in an incor-
rect order and/or violating structural properties. For
example, if a student executed Kruskal’s algorithm for
Minimum Spanning Trees, their final answer would be
a correct spanning tree, but it would not demonstrate
understanding of Prim’s algorithm.

To address these concerns, our checkers take an incre-
mental approach and step through the solution of the
problem, taking into account the user’s choices as they
happen. At each step, PILOT generates a correct solu-
tion for that step and then compares it to the student’s
solution to see if the student’s solution is equally as
valid. It’s important that it give credit to alternate,
equally valid answers – otherwise, we run into the prob-
lem of non-unique solutions again. Since this approach
looks at each individual step, it is not vulnerable to tak-
ing off many points for one mistake. Similarily, since it
checks at each step for correctness it can ensure the stu-
dent used correct process as well as coming to a correct
final solution.

In the case of MST-Prim, this step of the student’s an-
swer could be inferior to the correct solution in one of
the following ways:

• Creating a cycle

• Disconnecting the spanning tree

• Not adding another edge where an edge could be
added

• The edge the student chose is of higher weight than
the edge PILOT chose

If the student’s answer is equally as good as PILOT’s
answer (it is possible for two different edge choices to
both be correct if both do not create a cycle, main-
tain the spanning tree, and have the same weight), the
student gets credit for a correct answer. If PILOT de-
termines the student’s answer is wrong, it notifies the
student using both text and animation and also takes
away points from the student. The seriousness of the
error (and whether the student has already made that
error) affects how many points the student loses.

One example of the partial credit system is the one cur-
rently being used for grading MST-Prim problems. In
that system, the student’s grade is computed as follows:

• 3.0 points for ending with one connected spanning
tree, with no cycles, that includes most or all of the
vertices

• 3.0 points for maintaining a connected spanning tree
at all steps of execution (given that the previous con-
dition is met)

• plus 4.0 points

• minus 4.0/(total number of edges in student’s solu-
tion) for each edge of greater than minimum weight
or extraneous edge in student’s solution

The student will gain 10.0 points in total if their execu-
tion is perfect. See figure 8 for an example of a grade
report where the student had a cycle and one edge of
greater than minimum weight.

Once a system has been created for grading each step of
a pre-created solution, it was extremely easy to adapt to
immediate interaction; rather than going through each
step of a created solution at once, it simply grades each
step as the student enters it. It is important while do-
ing this to make sure that cached information about
the overall structure of the graph (such as whether the
graph has a cycle) is re-generated in the event the stu-
dent undoes a wrong answer.

5 Use in CS016

5.1 Classroom use

PILOT was used for the first time in a large-scale class-
room setting this spring in CS016 at Brown University.
It was introduced during lecture on April 10th, and stu-
dents were required to complete and turn in a desig-
nated problem by April 14th, shown in figure 9. Then,
a comparable traditional homework problem (with an
identical number of vertices and edges) was assigned to
be turned in on April 21st, shown in figure 10. Both



(a) Main window

(b) Message window

Figure 8: A student’s final grade

problems were for the execution of Prim’s Algorithm
for Minimum Spanning Trees on a specific graph.

The students were assigned comparable problems in
both PILOT and traditional homework for two reasons:
First, just in case PILOT turned out to be of no benefit,
the students would still have the opportunity to learn
the subject material – and second, because that would
make it possible to make correlations between perfor-
mance in the two media in order to determine whether
PILOT is of benefit.

5.2 Classroom concerns

To prepare an online homework for a classroom requires
attention to several concerns, including fairness and se-
curity.

Regarding fairness, students were encouraged to go
through as many random problems as they wished for
their own learning process, but since guaranteeing equal
difficulty between two different problems is quite diffi-
cult, anything involving a student’s grade cannot differ
between students – and thus, in order to guarantee fair-
ness, all students were given the same problem for the
problem they would eventually turn in for a grade.



Figure 9: The PILOT problem designated for handin.

START

10
40

202515

8

30

12

41

35

38

5

Figure 10: The traditional MST-Prim homework problem used for comparison.

In order to guarantee the security of student handins,
logs of student actions were placed into a password-
protected directory accessible only to authorized course
staff both as soon as the student clicked to Submit a
homework problem and after grading had been com-
pleted. These logs make it very difficult for one student
to copy another’s work without being caught, by using
timestamps for when the log was created and when it
is handed in – if one student were to save their solution
and give it to another student, the logs would reflect
that the student had handed in a correct answer with-
out taking the steps necessary to build it. Autosave
snapshots were also taken after every student action to
prevent the loss of a student’s work in the event of a
crash.

5.3 Empirical results

We took the following variables to examine for correla-
tion between them:

• P Performance in PILOT (grade on figure 9): 0.0 to
20.0

• H Performance on traditional homework problem
(grade on figure 10): 0.0 to 20.0

• T Amount of time spent using PILOT : 0 minutes to
238 minutes

• W Number of practice/learn problems student began
in PILOT : 0 to 68

• C Percentage of correct steps taken while using PILOT
: 0 to 100

T,W,C, and P were calculated by PILOT as the student
used it. H is based upon the traditional TA grading
scheme used in CS016, where the TAs assigned to grade
the problem determine the grading rubric that evening.
This system was chosen to match as closely as possible
to the way grading has been done in CS016 in past years.



(a) H (performance on traditional homework problem)

(b) P (performance in PILOT )

(c) T (number of minutes spent using PILOT )

Figure 11: Distribution of some variables in our empirical study



Our intention was at this point to correlate H to each
of the other metrics in order to determine whether per-
formance on PILOT correlated to performance on the
written homework (telling us that PILOT is a valid and
fair replacement for grading purposes) and whether stu-
dents who use PILOT for a longer amount of time per-
form better on the future written homework (telling us
that PILOT is indeed teaching them something).

Unfortunately, this proved impossible, for the reason
that the students did considerably better on the assign-
ment than expected. On H, 94 percent of the students
achieved perfect scores and only 2 students out of 102
received less than 16 out of 20 on the assignment, giv-
ing an average of 19.71 and a standard deviation of 0.56.
On P, 93 percent of the students achieved perfect scores
(not including 5 students who did not use PILOT and re-
ceived a grade of 0 for the assignment). Furthermore,
no relationship was found between those students who
did not perform well on the two assignments. The small
percentage of students who performed imperfectly – or
poorly – on the homework made it impossible to find a
significant relationship between it and any other vari-
able. You can see diagrams of the distributions on some
of the variables in figure 11.

We suspect that the cause of this inconclusive data is
that the graded problems we gave to the students, both
in PILOT and on the homework, were too easy. We are
not certain whether the problem was that the specific
problems we assigned were too easy or whether Prim’s
algorithm is too easy to learn, although we suspect the
second is a better explanation. We can probably reject
the hypothesis that this extremely positive performance
is the result of the students’ use of PILOT , since the
performance on H included several students who either
used PILOT very briefly or did not use PILOT at all,
and took a grade of 0 on that assignment. (5 of the 6
students who did not use PILOT still got perfect grades
on the homework)

Therefore, the essential step we must take in experi-
menting with PILOT in the future is to do our experi-
ment on a considerably more conceptually difficult type
of problem. One possibility under consideration is Max-
imum Flow algorithms. Next year, when we repeat the
experiment with this change, we hope to gain consid-
erably more conclusive data. Another future direction
once we have resolved this problem is a full-scale study
with a randomly assigned control group to ensure that
any corrleations between T or W and H are the result
of using PILOT rather than measures of how dilligent the
student is. This will require considerable care and per-
haps require conducting the study over multiple years
or outside of the classroom.

6 Future Work

The current PILOT system can be extended in many
ways. Of particular importance is the generation of
problems of approximately equal difficulty (and, related
to this, the generation of appropriate special cases). For
example, in Prim’s algorithm the addition of an edge
and vertex to the spanning tree may result in a new,
lower-weight connection for an unconnected vertex and
thus change the best choice for the next vertex/edge pair
added to the tree. Problems with many instances of this
case may be viewed as harder than problems without,
since they require knowledge of particular cases in the
algorithm. This is particularly relevant if PILOT is used
in a testing situation, since it is undesirable for one stu-
dent to get an easy case when another is faced with a
much harder example. One idea for dealing with this is
the generation of isomorphic graphs with different edge
weights but identical order of edge choice, drawn in a
different configuration.

Additionally, PILOT can be extended to handle addi-
tional problem types and algorithms. The mechanism
for doing this is straightforward — many other graph
problems, such as maximum flow, can be supported by
the current interface so all that is required are additional
checkers and solvers. Adding new problem types, such
as sorting, requires more work to create a new inter-
face in addition to generators/checkers/solvers. In both
cases, however, the server remains the same so adding
new components is only a matter of plugging in a new
front- or back-end. Adding new algorithms will also re-
quire the creation of problem checkers with appropriate
partial credit.

Finally, we believe that further empirical study of PILOT
is necessary in order to demonstrate its usefulness (or
uselessness, as the case may be). As discussed above,
this will include comparing with more difficult types
of problems, and possibly the use of random control
groups.

References

[1] Baker, R., Boilen, M., Goodrich, M. T., Tamassia,
R., and Stibel, B. A. Testers and visualizers for
teaching data structures. Proceedings of SIGCSE
(March/April 1999).

[2] Barequet, G., Bridgeman, S., Duncan, C. A.,
Goodrich, M. T., and Tamassia, R. Geometric
computing over the Internet. IEEE Internet Com-
puting 3, 2 (March/April 1999), 21–29.

[3] Barnett, L., Casp, J., Green, D., and Kent, J. De-
sign and implementation of an interactive tutorial
framework. In Proc. 29th SIGCSE Tech. Symp.
(1998), pp. 87–91.

[4] Blackboard Inc. www.blackboard.com.



[5] Boroni, C., Goosey, F., Grinder, M., Lambert, J.,
and Ross, R. Tying it all together creating self-
contained, animated, interactive, web-based re-
sources for computer science education. In Proc.
30th SIGCSE Tech. Symp. (1999), pp. 7–11.

[6] Boroni, C., Goosey, F., Grinder, M., and Ross,
R. Weblab! A universal and interactive teach-
ing, learning, and laboratory environment for the
World Wide Web. In Proc. 28th SIGCSE Tech.
Symp. (1997), pp. 199–203.

[7] Bridgeman, S., Garg, A., and Tamassia, R. A
graph drawing and translation service on the
WWW. Internat. J. Comput. Geom. Appl. 9, 4
& 5 (1999), 419–446.

[8] Bridgeman, S., Goodrich, M. T., Kobourov, S. G.,
and Tamassia, R. Pilot: an interactive tool for
learning and grading. Proceedings of SIGCSE
(March/April 2000), 139–143.

[9] Carrasquel, J. Teaching CS1 on-line: the good, the
bad, and the ugly. In Proc. 30th SIGCSE Tech.
Symp. (1999), pp. 212–216.

[10] Corbett, A., Koedinger, K. R., and Anderson,
J. Intelligent tutoring systems. In Handbook
of Human-Computer Interaction, M. Helander,
T. Landauer, and P. Prabhu, Eds. Elsevier Science,
Amsterdam, The Netherlands, 1997, pp. 849–874.

[11] Di Battista, G., Garg, A., Liotta, G., Tamassia,
R., Tassinari, E., and Vargiu, F. An experimen-
tal comparison of four graph drawing algorithms.
Comput. Geom. Theory Appl. 7 (1997), 303–325.

[12] Goodrich, M. T., Handy, M., Hudson, B., and
Tamassia, R. Abstracting positional information
in data structures: Locators and positions in jdsl.
Oopsla ’98 Technical Notes (1998).

[13] Jackson, D., and Usher, M. Grading student pro-
grams using ASSYST. In Proc. 28th SIGCSE Tech.
Symp. (1997), pp. 335–339.

[14] Marimba. Bongo sets the rhythym for
java development. Press Release, 1996.
http://www.marimba.com/news/releases/bongo-
oct7.html.

[15] Mason, D., and Woit, D. Integrating technology
into computer science examinations. In Proc. 29th
SIGCSE Tech. Symp. (1998), pp. 140–144.

[16] Mason, D., and Woit, D. Providing mark-up and
feedback to students with online marking. In Proc.
30th SIGCSE Tech. Symp. (1999), pp. 3–6.

[17] Mason, R. Graph editor: An applet interface to
graph drawing server. Master’s thesis, Brown Uni-
versity, March/April 2000.

[18] McArthur, D. Some possible futures for ar-
tificial intelligence in mathematics education.
Proceedings of the Fifth Annual Conference

on Technology in Collegiate Mathematics (1992).
http://www.rand.org/hot/mcarthur/Papers/aied.htm.

[19] Pierson, W., and Rodger, S. Web-based animation
of data structures using JAWAA. In Proc. 29th
SIGCSE Tech. Symp. (1998), pp. 267–271.

[20] Stasko, J., Domingue, J., Brown, M. H., and Price,
B. A., Eds. Software Visualization: Programming
as a Multimedia Experience. MIT Press, 1998.

[21] Tinoco, L., Fox, E., and Barnette, D. Online eval-
uation in WWW-based courseware. In Proc. 28th
SIGCSE Tech. Symp. (1997), pp. 194–198.

[22] WebCT, Inc. www.webCT.com.


