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Introduction 

As instructional systems support more open-ended problem-solving, it becomes essential to understand the 

particular strategies or approaches that students take to solving problems. Increasingly, machine learning 

techniques to detect student strategies will be used in these instructional systems. One advantage of such 

self-improving systems is that, as usage broadens, they become more sophisticated in their analysis of stu-

dent behavior and ability to support a wide variety of learning approaches. In this way, such systems become 

more educationally effective, particularly for students who employ relatively rare approaches to solving 

problems. 

We consider a strategy to be a sequence of steps or operators taken in a problem space with the goal of 

accomplishing a given task or solving a problem (Newell & Simon, 1972). In theory, any variation in prob-

lem solving may represent a different strategy. In practice, however, we often group insignificant variations 

in problem solving steps into a single strategy and consider those that represent “significantly” different 

approaches to represent different strategies. Consider Figure 1. The solutions represented in Strategy A and 

Strategy B both consist of three similar steps. In the first step, the student subtracts a variable term from 

both sides of the equation (5x in Strategy A; 3x in Strategy B). In the second step, the student using Strategy 

A subtracts 4 from both sides, and the student using Strategy B adds 6 to both sides. In the third step, each 

student divides both sides of the equation by the coefficient. A student employing Strategy C combines the 

first two steps into a single step, subtracting 3x-6 from both sides of the equation. Clearly Strategy A and 

Strategy B are similar approaches and might be considered variants of a single strategy. A student who is 

able to recognize and execute Strategy C is illustrating a more sophisticated approach to problem-solving 

and might be considered to be using a strategy very different from either A or B. 

 

3x+4 = 5x-6 

-2x+4 = -6 

-2x = -10 

x = 5 

Strategy A 

 

3x+4 = 5x-6 

4 = 2x-6 

10 = 2x 

5 = x 

Strategy B 

 

3x+4 = 5x-6 

10 = 2x 

5 = X 

 

 

Strategy C 

Figure 1. Three strategies for solving an equation. 

The decision about whether to consider a different sequence of steps to be a different strategy depends on 

the goals of the educational system, so it is important to consider the reasons why we might need to under-

stand and distinguish different strategies. Identification of strategies may allow systems to: 
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 Infer the student’s level of knowledge. Sometimes, use of a particular strategy is an indicator of 

the student’s level of understanding. Lemaire and Siegler (1995) found that students’ use of more 

sophisticated strategies and of better sensitivity to appropriateness of strategies changed as students 

learned single-digit multiplication. 

 Identify misconceptions. Strategies are approaches to problem solving, but they need not be cor-

rect approaches. A student may, for example, incorrectly believe that numbers with more decimal 

places are larger than numbers with fewer decimal places (Isotani et al., 2010). In the above exam-

ple, the student may have a misconception about the negation operator, and consider 3x - 5x = 2x 

(always subtract the smaller number from the large). Identification of incorrect problem-solving 

steps relating to this misconception can greatly aid remediation. 

 Indicate student’s sensitivity to problem characteristics. In some cases, different strategies are 

more appropriate for different problem types, and part of the target of learning may be that students 

understand how to develop strategies for different problem types, and then apply appropriate strat-

egies when solving problems. For example, in solving simultaneous equations, substitution and 

linear combination are both valid strategies that can be applied to a set of equations, but, depending 

on the equations, one of the strategies may be easier to apply than the other. Proficient students 

should be flexible enough to choose the appropriate strategy for the problem. 

 Identify use of suboptimal or incorrect strategies. Like the last bullet, this may occur when stu-

dents have just learned the individual skills needed to solve problems, but have not had opportuni-

ties and practice to combine the use of these skills to solve problems. Students may combine their 

skills in suboptimal ways when trying to come up with a sequence of steps to solve a problem. 

 Provide opportunities for reflection and generalization. Exposing students to multiple strategies 

may encourage greater procedural flexibility (Crowley & Siegler, 1999; Rittle-Johnson & Star, 

2007). An educational system may wish to provide students with worked examples and problem-

solving opportunities that employ different strategies. This approach would require knowledge of 

the strategies a particular student employs. 

 Identify metacognitive strategies. In addition to strategies used to solve individual problems, stu-

dents employ metacognitive strategies, including self-explanation and use of worked examples. 

Instructional systems will be more effective to the extent that systems can identify and support 

productive metacognitive strategies. 

 Identify conceptual understanding. Work by Rowe and colleagues (2014, 2017) finds that be-

havioral strategies within learning games can be indicative of differences in conceptual understand-

ing, correlating highly with alternate measures of those same concepts. 

 Indicate students’ sensitivity to contextual characteristics. Different strategies may require dif-

ferent amounts of time to execute or different resources (such as working memory load). Siegler 

(1988) found that some students employed different strategies under time pressure than they would 

apply with unlimited time. Such sensitivities may interact with student characteristics. Beilock and 

DeCaro (2007) found that low working memory capacity students more readily switched their strat-

egies (to simpler heuristics) under pressure than high working memory capacity students. 
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Methods 

In this section, we consider several methods for determining student strategies, given a stream of data de-

scribing the student’s actions in a problem-solving episode. 

Model Tracing 

Model-tracing tutors (Corbett, 2001) monitor student activities in problem solving and attempt to map the 

student’s actions to particular problem-solving strategies. Such actions are generally classified as belonging 

to a correct strategy, an incorrect strategy or an unrecognized strategy. Since strategies (both correct and 

incorrect) are pre-specified in the model, such systems can recognize strategies that students employ. Steps 

that are not recognized as belonging to a strategy are considered to be incorrect (but uninterpretable). One 

downside of this approach is that unique or rare strategies may not be recognized. 

The strategies encoded in model-tracing tutors are typically initially discovered through cognitive task anal-

ysis (Clark & Estes, 1996; Lovett, 1998), but such systems can be extended through analysis of data col-

lected through such systems, as described here. 

In some cases, model-tracing systems can recognize cases where strategy recognition has failed and adapt 

to incorporation recognition of the new strategy in the future. Ritter (1997) describes one such method by 

which model-tracing tutors can learn to recognize new strategies. In model-tracing tutors for domains where 

correct solutions can be evaluated but not modelled, the tutor can recognize and provide feedback for more 

optimal strategies. For example, an equation solving tutor can learn more efficient strategies that are 

“demonstrated” by the student. 

Detector-based strategy recognition 

Another method for identifying student strategies is to develop a machine-learned model, often referred to 

as a “detector”, which recognizes strategies that human beings can identify but cannot easily reduce to a 

straightforward set of rules, as is necessary for most uses of model tracing. This approach relies upon first 

obtaining human labels of when the strategy is present or absent, distilling features of the data that are 

reasonably likely to correspond to that strategy, and then using machine learning to train a model that can 

replicate the human judgments.  

In the first step of this process, software is developed to display a substantial number of examples of student 

interaction to a set of human coders who can recognize the behavior. These displays can be presented 

through either a screen replay of learner behavior (e.g. Aleven et al., 2004) or a text replay (e.g. Baker, 

Corbett, & Wagner, 2006), pretty-printed log files. Then, typically, two coders code the same subset of the 

total data set and check for acceptable inter-rater reliability. After this, one or both of the coders label the 

remaining data. 

In the second step of the process, data features thought to correspond to the strategy of interest are distilled 

from the data. This step, often termed feature engineering, can vary in its degree of sophistication, from a 

single researcher brainstorming a set by herself/himself, to a more structured brainstorming process involv-

ing multiple types of expertise, to an in-depth process of interviewing the coders and discussing draft mod-

els of their reasoning processes (Paquette et al., 2014).  

In the third step of the process, off-the-shelf machine learning algorithms are used to derive a model that 

replicates the human judgments with reasonable reliability, and the resultant models are tested using cross-

validation. 
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The first strategy this approach was used to study was gaming the system, when a student misuses learning 

software to proceed without learning. Baker and de Carvalho (2008) took data on student use of a Cognitive 

Tutor, distilled text replay clips of student behavior, labeled them, and built a decision tree to capture this 

strategy. Later work extended this approach to SQL-Tutor (Baker, Mitrovic, & Mathews, 2010) and demon-

strated that better results could be obtained through a more sophisticated feature engineering process 

(Paquette et al., 2014). Related work investigated whether a player was seriously attempting to complete 

quests in an online story-based role playing game (DiCerbo & Kidwai, 2013). 

Sao Pedro and his colleagues extended this approach to modeling scientific inquiry strategies, including 

both whether a student could design a controlled experiment across a set of trials of a simulation (Sao Pedro 

et al., 2013), and whether the learner planned using a table (Montalvo et al., 2010). A refined version of 

Sao Pedro’s original detector is now used in the commercial Inq-ITS platform (Gobert et al., 2015). 

Elizabeth Rowe and her colleagues extended this approach to modeling the strategies students engaged in 

while playing a conceptual physics game, demonstrating that it was possible to capture gameplay strategies 

associated with conceptual understanding of Newton’s Laws (Rowe et al., 2014) and that these detectors 

correlated with external measures of Newton’s Laws (Rowe et al., 2017). 

Together, these examples demonstrate the feasibility of identifying student strategies through an automated 

detector machine learning approach. 

Sequence Mining Methods for Strategy Detection  

In the learning sciences and educational psychology research, strategies have been defined as consciously-

controllable processes for completing tasks (Pressley, et al., 1989). Within this framework, it is possible to 

characterize strategies as a sequence of actions that a learner performs to complete a task or subtask in the 

learning environment. Strategies are further characterized by the context in which they are applied and the 

specific relations among component activities that make up a strategy. Take, for example, learning envi-

ronments such as Betty’s Brain, where students learn about scientific processes (e.g., climate change) by 

teaching a virtual agent named Betty (Leelawong & Biswas, 2008: Biswas, et al., 2016).  They do this by 

constructing a visual causal map that represents the relevant scientific process as a set of concepts connected 

by directed links that represent causal relations. Once taught, Betty can use the map to answer causal ques-

tions and explain those answers. The goal for students using Betty’s Brain is to teach Betty a correct causal 

map that matches a hidden, expert model of the domain. The students’ learning and teaching tasks are 

organized around three activities: (1) reading hypertext resources that provide information on the science 

concepts and causal relations between the concepts, (2) building the causal map using a visual drag and 

drop interface, and (3) assessing the correctness of the map by getting the agent Betty to take quizzes and 

evaluating her answers. 

Students strategies in this environment revolve around how they combine the three activities to accomplish 

higher level goals or tasks, such as acquiring information and constructing a part of the causal map (e.g., 

human activities that cause the greenhouse effect) or correcting errors in a section of their map (e.g., analyze 

Betty’s quiz results, identify causal links that are related to incorrect answers, and correct the erroneous 

links). However, identifying students’ strategies from their activity logs is not an easy task. In open-ended 

learning environments (OELEs), such as Betty’s Brain, the fact that students have choice in the way they 

go about constructing their models, interpreting their strategies requires an understanding of the task that 

they are currently working on and an interpretation of their actions in the context of this task. 

We have developed sequence mining approaches to derive frequent action sequences when they work in 

the Betty’s Brain environment (Kinnebrew, Loretz, & Biswas, 2013; Kinnebrew, Segedy, & Biswas, 2014). 

In general, Sequential Pattern Mining (Agrawal & Srikant, 1995) algorithms are designed to find frequent 
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sequential patterns, i.e., series of action that occur in many of the students’ activity sequences provided 

(e.g., the sequential pattern A then B then C occurs in both of the sequences C → A → B → C and A → B 

→ C → A). Researchers have applied sequence mining techniques to a variety of educational data in order 

to better understand learning behaviors (e.g., Amershi & Conati, 2009; Kinnebrew et al., 2013; Nesbit et 

al., 2007; Perera et al., 2009; Su et al., 2006; Tang & McCalla, 2002).  

To extract the activity sequences of student work in Betty’s Brain for sequence mining, log events captured 

by the learning environment abstracted student activities into a few primary categories with some additional 

subcategories (Kinnebrew & Biswas, 2012; Kinnebrew, et al., 2013). The primary actions extracted from 

the logs to generate the action sequences were: 

1. Information acquisition (IA) actions: (a) Read: reading one or more of the science resource pages; 

and (b) Note: entering information into the note-taking tool provided in the system; 

2. Solution construction (SC), i.e., Edit actions: these include operations on the causal map, with ac-

tions further divided by: (i) whether they operate on a causal link or concept and whether the action 

was an addition (Add), removal (Remove), or modification (Change), e.g., LinkAdd or Concep-

tRemove; 

3. Solution assessment (SA) actions: (a) Query: students use a template to ask Betty a question, and 

she answers the question using a causal reasoning algorithm (Leelawong & Biswas, 2008); (b) 

Quiz: students assess how well they have taught Betty by having her take a quiz, which is a set of 

questions chosen and graded by the Mentor agent; and (c) Explain: students probe Betty’s reasoning 

by asking her to explain her answer to a question (either from the quiz or from a query). 

Strategies derived from analyzing students’ logs across multiple studies with Betty’s brain are discussed in 

a number of our papers (e.g., Kinebrew & Biswas, 2012; Kinnebrew, et al., 2013; Kinnebrew, et al., 2014; 

Kinnebrew, et al., 2017; Munshi, et al., 2018). We provide some illustrative examples in this chapter. For 

example, a study conducted in 6th grade science classrooms in 2015, showed frequent use of the IA → SC 

strategy, i.e., they read the resources and then added to or made changes in their causal map. In this case, 

frequent implied five or more uses of this strategy per student during the course of the intervention. When 

comparing the use of this strategy by high and low performers, i.e., those who had high versus low scores 

in their final map scores, we found that high performers used this strategy to make correct changes to their 

map (i.e., added a correct link or deleted an incorrect one) 62% (SD = 9%) percent of the time, whereas low 

performers made correct changes to their map only 53% (SD = 16%) of the time. 

To better understand how students employed this general strategy, we considered two specific variants of 

this strategy in the Betty’s Brain environment:  IA → Add a causal link to the map and IA → Correct a 

causal link in the map by changing or removing an incorrect causal link in the map. Results indicate that 

IA → Add a causal link was used by high performing students on average 23.9 (SD = 16) times, and they 

performed this task correctly 59.3% (SD = 13.1%) of the time, whereas low performers performed this 

strategy on average only 8.9 (SD = 7.5) with a 48.4% (SD = 22.2%) correct use. Similarly, for the IA → 

Correct a causal link strategy, the numbers were 5.3 (SD = 4) with 75.1% (SD = 17.2%) correct use for the 

high performers, whereas the numbers were 2.9 (SD = 3.6) with 81.1% (SD = 23.5%) correct use by low 

performers. Though the accuracy numbers are not much different, the high performers use the strategy 

many more times than the low performers, thus generating better maps and better learning gains overall 

than the low performers. Linked to this strategy, we also found that the high performers had significantly 

longer read time per pattern than the low performers. 

Another frequent pattern used by students corresponds to a debugging strategy, i.e., SA →  LinkAdd →  SA 

with two specific variants: (1)  Quiz Explanation →  Link Add → Quiz and Quiz →  LinkAdd →  Quiz. 
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These patterns suggest an informed guess-and-check strategy in which the quiz results (either the overall 

results or the information gleaned from a Quiz Explanation for a specific quiz question) are used to suggest 

a potentially-missing link, which is then added to the map. This is followed by checking the correctness of 

the “guess” by taking another quiz. As expected, for a guess-and-check strategy, the link added was usually 

incorrect (average percentage of correct additions per student = 19%, SD = 14%).  

 

 

Figure 2. Heatmap of percentage correct links added in SA →  LinkAdd →  SA over time. 

Given the more detailed information available from the quiz question explanation, we initially expected 

better performance in adding a correct link for that variant of the strategy. However, this variant actually 

had a marginally lower percentage of correct additions compared to the other variant. Further, analysis of 

effectiveness over the course of students’ work in the environment illustrated that performance (correctness 

percentage) with SA →  LinkAdd →  SA was better early and late while being especially poor in the middle. 

The performance heat map shown in Figure 2, indicates that while the high performing (HiMap) students 

performed best with this strategy early and (to a lesser extent) late in the intervention, the low performing 

(LowMap) students did not make correct link additions with this strategy until relatively late (after at least 

60 percent of their total actions on the system). This may imply that it took the low performing students 

until late in the intervention to understand how to interpret and use the quiz results. On the other hand, the 

high performers used this strategy with more success in the early phases of map building. The HiMap 

students’ effectiveness with this strategy may have dropped off once they started dealing with the more 

difficult material (for which they had little prior knowledge) toward the middle of their activities, finally 

rebounding some as they gained proficiency. In addition to illustrating the importance of incorporating the 

overall informed guess-and-check strategy in the strategy model, analysis of this high lift pattern suggests 

that there may be additional interactions with prior knowledge and skills worth investigating through further 

experiments. 

The results of combining sequence mining algorithms with additional analysis of the relations between 

actions, showed potentially important differences between high- and low-performing students in terms of 

their strategy use. Overall, an effective analysis framework applied to the rich behavioral data produced by 

OELEs has the potential to enable deeper analyses of students’ cognitive and metacognitive behavior in 

complex learning tasks. Ultimately, we believe that this analysis framework can form the basis for design-

ing richer learner modeling schemes that characterize students’ activities by analyzing their learning be-

haviors and performance with respect to their cognitive and metacognitive processes. 

Discriminant Sub-sequence Analysis from Tutorial Dialogues 

A key research question in intelligent tutoring systems and in the broader instructional research community 

is understanding what expert tutors do (Rus, D’Mello, Hu, & Graesser, 2013). This goal is motivated by 

research showing that expert tutors are very effective (Bloom, 1984). 

Indeed, understanding what expert tutors do has been a research goal undertaken by theoreticians and em-

piricist alike. A typical operationalization of this goal of understanding of what good tutors do is to define 
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the behavior of tutors based on their actions. To this end, the learner-tutor interactions are broken down 

into primitive actions and then significant differences between expert tutors and less accomplished tutors 

are reported. For instance, Boyer and colleagues (2011) modelled the learner-tutor interaction as sequences 

of task actions (e.g., opening a file) and dialogue acts, i.e. actions behind utterances, while Cade and col-

leagues (2008) used just dialogue acts to model the learner-tutor interaction. 

 

In a discriminant sub-sequence analysis approach (Rus, et al., 2017; Maharjan, Gautam, & Rus, 2018), 

tutorial dialogues are modeled as dialogue-act sequences because there are no other types of actions, e.g. 

task actions as in Boyer and colleagues (2011), considered in the analysis (Rus, et al., 2017;  Maharjan, 

Gautam, & Rus, 2018). This view of a tutorial dialogue as a sequence of actions is based on the language-

as-action theory (Austin, 1962; Searle, 1969). According to the language-as-action theory, when we say 

something we do something. Therefore, all utterances in a tutorial dialogue are mapped into corresponding 

dialogue acts using, in our case, a predefined dialogue or speech act taxonomy. The taxonomy was defined 

by educational experts and resulted in a two-level hierarchy of 17 top-level dialogue acts and a number of 

dialogue subacts. The exact number of subacts differs from dialogue act to dialogue act. The taxonomy 

identifies 129 distinct dialogue act and sub-act combinations. Further, we have a set of 17 different dialogue 

modes defined by experts as in the following: Assessment, Closing, Fading, ITSupport, Metacognition, 

MethodID, Modeling, OffTopic, Opening, ProblemID, ProcessNegotiation, RapportBuilding, RoadMap, 

SenseMaking, Scaffolding, SessionSummary and Telling. A detailed description of the dialogue modes is 

available (Morrison et al., 2015). It should be noted that automatically discovered dialogue act taxonomies 

are currently being built (e.g. Rus, Graesser, Moldovan, & Niraula, 2012) but it is beyond the scope of this 

chapter to automatically discover the dialogue acts in our tutoring sessions. 

A large corpus of about 19K tutorial sessions between professional human tutors and actual college-level, 

adult students was collected via an online human tutoring service. Students taking two college-level devel-

opmental mathematics courses (pre-Algebra and Algebra) were offered these online human tutoring ser-

vices at no cost. The same students had access to computer-based tutoring sessions through Adaptive Math 

Practice, a variant of Carnegie Learning’ Cognitive Tutor (Ritter et al., 2007). A subset of 500 tutorial 

sessions containing 31,299 utterances was randomly selected from this large corpus for annotation with the 

requirement that a quarter of these 500 sessions would be from students who enrolled in one of the Algebra 

courses (Math 208), another quarter from the other course (Math 209), and half of the sessions would in-

volve students who attended both courses. 

This research investigated which distinctive subsequences of dialogues, dialogue acts and modes comprise 

effective and less-effective sessions. To this end, each tutorial session was rated by Subject Matter Experts 

(SMEs) using a 1-5 scale (5 being best score) along two dimensions: evidence of learning (EL) and evidence 

of soundness (ES). The ES score reflects how well tutors applied pedagogically sound tactics in tutorial 

sessions. On the other hand, the EL score reflects how well students learned from tutorial sessions. The EL 

and ES scores were found to be highly correlated (Pearson coefficient of 0.7). The research categorized all 

human annotated sessions having ES and EL scores less than 2 as ineffective, and all sessions rated with 

ES = 5 and EL = 4 as good or effective sessions.  

Then sequence pattern mining was conducted using the Traminer package in R. The Traminer algorithm 

first finds the most frequent subsequences by counting their distinct occurrences and then applies a Chi-

squared test (Bonferroni-adjusted) to identify sub-sequences that are statistically more (or less) frequent in 

each group. A p-value < 0.4 threshold was used to select likely distinctive sub-sequences, with dialogue 

acts, actsubacts and mode-switches used as observations. The observations were granularized further by 

adding speaker information. 

It should be noted that a subsequence is not necessarily a contiguous sequence of observations, but the order 

of the observations is preserved. For example, (Assertion)-(Expressive) is a valid sub-sequence of dialogue 
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acts formed from the (Assertion)-(Request)-(Expressive) contiguous sequence fragment. Sub-sequences 

were generated up to length 7 from all the annotated tutorial sessions. 

The discriminant sub-sequences mined indicated that good tutors use more Expressives and prompt students 

more in sessions of high learning gains. It was observed that all discriminant sub-sequences of acts contain 

Expressive acts initiated by tutors or students. The good tutors often prompt students to confirm the students 

are following their tutoring or, to elicit further answers or reasoning from the students. Furthermore, the 

tutors’ expressions of praise (T-Expressive-Positive) and farewell (T-Expressive-Farewell) and, the stu-

dents expressing thanks (S-Expressive-Thanks) are highly predictive of effective sessions. The tutors often 

praise students to keep them engaged to the task or, when they answer correctly. The tutee expressing thanks 

(S-Expressing-Thanks) might suggest the tutee is satisfied with the tutoring. Moreover, the tutor expressing 

farewell indicates the tutoring is coming towards the end. The sessions having proper closing also might 

suggest that both student and tutor are satisfied with the tutorial Session.  

The discriminant subsequent analysis for modes revealed interesting patterns as well when analyzed 

through a pedagogical lens. Good tutorial sessions have Scaffolding (S) and Fading (F) as the dominant 

strategies i.e. the good tutors do more Scaffolding and Fading to get the problem solved by the students 

themselves. The sub-sequences S-S, F, S-F, F-F are very strong indicators of good sessions (p-value<0.05) 

while F-S, F-F-S, S-F-S also fairly indicate the sessions of top quality. Another interesting observation is 

that the Closing mode (p-value=0.0475) is also a very strong indicator of top sessions. Moreover, a Fading-

Closing (p-value=0.002) sub-sequence is even more predictive than Closing alone. We also observed that 

switching to Scaffolding or Fading modes after ProblemIdentification is more effective as evidenced by 

sub-sequences O-P-F (p-value=0.1764), P-F (p-value=0.0198) and P-S-S (p-value=0.0362). 

Discussion 

The methods described here allow us to identify differences in students’ approaches to solving problems. 

It is important to remember that not all differences may be instructionally relevant. Within each method (or 

combination of methods), instructional system designers will need to make decisions about which ap-

proaches represent strategies that are indicative of different instructional needs or differing assessments of 

students’ capabilities and knowledge. 

In many cases, it is inappropriate to talk about a student’s strategy as being a property of that student. The 

particular strategy employed may differ due to problem characteristics and also due to that student’s state 

of knowledge. A particularly interesting case is where changes in a student’s strategy over time can be 

considered a measure of the student’s learning of the target knowledge. Corbett et al. (2000) describe one 

such case. Students were asked to complete a table representing the mathematical encoding of a word prob-

lem. Novice students typically started to complete the table in an order that did not take the problem struc-

ture into account: top-to-bottom and left-to right. As students came to understand the hierarchical structure 

of the mathematical terms underlying the problem, the order in which they filled in the cells in the table 

came to match the underlying structure. In cases like this, the students’ strategy may be an indicator of the 

student’s understanding of the mathematics, somewhat independent of their success in the task itself. 

Recommendations and Future Research 

Given the importance of understanding the particular strategies that students employ when solving prob-

lems, it is essential that such systems be able to detect and respond to different student strategies. In more 

open educational environments, where different solution strategies are encouraged, the ability to understand 

varied student strategies is even more important. In fact, widely used educational systems that support a 
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wide variety of strategies may be the best source for data on the strategies that students use. Using the 

techniques outlined here, such systems may greatly benefit from becoming self-improving systems that are 

able to detect and react to novel student problem-solving approaches. 

Within the Generalized Intelligent Framework for Tutoring (GIFT) architecture, instructional systems 

would benefit from recording and sharing student strategies employed while solving particular problems, 

in addition to the activity and evaluative information already stored. Domain models might benefit from 

knowledge of likely strategies, which could be used for activity selection, especially in cases where appro-

priate strategy choice and problem characteristics are strongly linked. Task designers should take strategy 

use into account. In some cases, tasks might be designed to be maximally flexible, allowing students to 

employ strategies that they pick. In other cases, an educational goal might be to ensure that students master 

more than one strategy. For this kind of goal, task designers might design multiple variants of the user 

interface, each of which constrains the student to employ a particular strategy. 
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