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ABSTRACT 
The relationship between learners’ cognitive and affective states 
has become a topic of increased interest, especially because it is 
an important component of self-regulated learning (SRL) pro-
cesses. This paper studies sixth grade students’ SRL processes as 
they work in Betty’s Brain, an agent-based open-ended learning 
environment (OELE). In this environment, students learn science 
topics by building causal models. Our analyses combine observa-
tional data on student affect with log files of students’ interactions 
within the OELE. Preliminary analyses show that two relatively 
infrequent affective states, boredom and delight, show especially 
marked differences among high and low performing students. 
Further analysis shows that many of these differences occur after 
receiving feedback from the virtual agents in the Betty’s Brain en-
vironment. We discuss the implications of these differences and 
how they can be used to construct adaptive personalized scaffolds. 
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1 INTRODUCTION 
Researchers have highlighted the importance of modeling and 
scaffolding students’ self-regulated learning (SRL) processes to 
improve their learning effectiveness in computer-based learning 
environments. SRL theories focus on how the regulation of cogni-
tive, metacognitive, affective and motivational processes relate to 
student learning [1, 23, 28, 30-34]. SRL has been studied in a wide 
variety of contexts, including those where students are learning 
complex science phenomena [26]. Analyzing the interactions be-
tween students’ cognitive and affective processes in open-ended 
learning environments (OELEs) can help us tailor these environ-
ments to provide personalized adaptive scaffolds [2] that make the 
learning more effective and engaging.  
OELEs provide users with complex learning goals and a set of 
tools that support knowledge acquisition, solution construction, 
and solution checking [5]. Learners have choices in the way they 
use these tools to accomplish their learning and problem-solving 
goals. While these environments encourage exploration, strategic 
thinking, and developing monitoring skills, the open-ended na-
ture of OELEs can make the process of tracking and interpreting 
learners’ strategic and regulatory behaviors a challenging task. At 
the same time, it is essential to understand learners’ behaviors to 
provide them with appropriate feedback when they encounter dif-
ficulties in achieving their learning goals in these environments.  
This paper examines students’ cognitive and affective states as 
they work with Betty’s Brain [16], an OELE where students learn 
about scientific phenomena by building causal maps of complex 
science topics. From our classroom studies, we derive empirical 
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evidence of how students’ cognition and affect interplay is influ-
enced by their learning activities and interactions with the agents 
in the learning environment. These findings provide us with in-
formation on how students’ regulatory skills unfold in OELEs, al-
lowing us to consider how adaptive scaffolding can be appropri-
ately deployed to better support learning and performance. 

2 BACKGROUND 
Self-regulated learning (SRL) models seek to explain the recursive 
nature of students’ behavioral, cognitive and metacognitive pro-
cesses in learning [29-30], emphasizing the roles of self and exter-
nal feedback on the regulation of these processes. Later versions 
of Winne’s model of SRL [29], which has been empirically sup-
ported by several studies (cf., review in [11]), include affective 
states. Several other SRL researchers [10, 23, 32] also point to af-
fect as an important component of SRL.   
The role of affect in SRL presents unique modeling challenges, as 
do the techniques typically employed to study them [20]. For ex-
ample, retrospective self-reports rely on the accuracy of student 
memory [6]. Coarse-grained log-file measures that trace students’ 
activities during the learning task do not accurately reflect affec-
tive processes, though more fine-grained detectors [e.g. 3] may be 
more relevant. Reflection methods that use self-assessment to help 
students plan and understand their actions (e.g., learning diaries) 
often annoy students because they interrupt learning activities.  
The relationship between cognition and affect has been studied 
broadly [4, 24], but also specifically within academic contexts, 
where epistemic emotions like boredom, confusion, delight and 
frustration are the focus [21]. Several researchers have modeled 
affect dynamics among learners [e.g., 19], showing links that com-
plement predictions from other theories of learning. For example, 
the observed link from frustration to boredom (where the learner 
shifts from an activating emotion to a deactivating one) matches 
the forced-effort theory of boredom [15].  
Research also suggests that in demanding achievement settings, 
learners’ effort and achievement are determined by their per-
ceived task difficulty and ability beliefs [27]. Bridging the gap be-
tween task demand and learner capabilities can increase self-effi-
cacy and reduce negative affective experiences like boredom [22]. 
This calls for adaptive scaffolding to help deal with task complex-
ity and regulate affect by providing support based on cognitive 
and affective experiences in specific task contexts.  
To design such scaffolds, it helps to understand how learners’ cog-
nitive and affective behaviors interact with their performance on 
different tasks within the learning environment. This study com-
bines log file analysis with field observations to study the links 
between learners cognitive and affective states as they perform 
different activities in the Betty’s Brain environment [5, 13]. 

3 BETTY’S BRAIN  

3.1  Learning-by-Teaching in Betty’s Brain  
Betty’s Brain uses a learning-by-teaching paradigm to help middle 
school students develop cognitive and metacognitive processes as 
they build causal models of scientific processes to teach Betty, a 
virtual agent [13]. Students have access to a number of learning 

resources including an online hypermedia science book that co-
vers domain content, and a “teacher’s guide” that provides sug-
gestions on how to teach Betty by constructing and reasoning 
with causal maps. Learners can also seek help from the mentor 
agent, Mr. Davis, who tracks students’ activities and performance 
(i.e., how well Betty is doing), and provides information on effec-
tive teaching and map debugging strategies.  
Students can further probe Betty’s understanding by asking her to 
explain her answers to questions they formulate, or by asking her 
to take quizzes administered by Mr. Davis that evaluate the cur-
rent state of the map. Through this feedback, students can assess 
Betty’s learning, (which reflects their own knowledge of the sci-
ence concepts and processes), and then perform relevant activities 
to improve Betty’s and their own knowledge.  

3.2  Conversations with the Teachable and 
Mentor Agents  

Students’ interactions with the mentor agent, Mr. Davis, can be 
initiated by either Mr. Davis or the student. These conversations 
can be further classified as: (1) Progress reports, where Mr. Davis 
periodically provides feedback (e.g., praise if the student is doing 
well i.e., the map score is increasing, or suggestions on how the 
student could improve their performance e.g., by reading specific 
pages in the resources); and (2) Post-Quiz Hints, where Mr. Davis 
analyzes the quiz results and provides hints to help the student 
improve their causal map. Such hints may be direct (e.g., “You are 
missing a link from precipitation to condensation. You may add it to 
your map.”) or indirect (e.g., “You should go and read the page on 
Droughts and Water Cycle.”).  
 

 

Figure 1: Mr. Davis giving the student a hint after student 
makes Betty take a quiz in Betty’s Brain. 

In addition, Betty may provide “encouragement” prompts. When 
the student is performing well, she praises the student for being a 
good teacher. Periodically, Betty also asks the student “How are 
you feeling?” Depending on the student’s response, she may en-
courage additional effort, (e.g., If student’s response is “I am feel-
ing bored”, Betty says “I know you can teach me. Keep at it!”). 

 



 

4 METHODS 
Our study included 93 sixth-grade students from four science clas-
ses in an urban public school in Nashville, TN, USA. The study 
was conducted over seven days. It included a pre-test on day 1, 
training on the system on day 2, working on Betty’s Brain to 
model the human causes and effects of climate change on days 3-
6, and a post-test on day 7. The map that the students were ex-
pected to construct to teach Betty include a total of 25 causal links. 
The paper-based pre- and post-tests were identical and tested stu-
dents’ knowledge on the science domain concepts and under-
standing of causal relations using a combination of multiple-
choice (MC) and short-answer (SA) questions. Students could re-
ceive maximum scores of 7 points for the former and 9 points for 
the later, for a total maximum score of 16.   

4.1 Affect Data 
We analyse students’ logged actions (as described in Table 1) and 
their observed affective states while they work with Betty’s Brain. 
Data on affective states were collected using the Baker Rodrigo 
Ocumpaugh Monitoring Protocol (BROMP; [18]). In this protocol, 
trained observers (inter-rater reliability: Cohen’s kappa > 0.6 ) 
code students individually, in a pre-determined order using a mo-
mentary time sampling technique. Observers make holistic judg-
ments, recording both affective states (i.e. bored, confused, delight, 
engaged concentration, frustrated, other) and behavioral categories 
(i.e. on-task, off-task, on-task conversation, other). Observers are 
trained to record the first thing they see, but have up to 20 seconds 
to make a decision, after which they are supposed to mark the 
observation as “other.” (For the purposes of this study, only affec-
tive categories are considered.) 
Observations are recorded using an Android app [17], which en-
forces the protocol and synchronizes with an internet time server 
allowing each observation to be aligned with log files of student 
activities within the system. The app also helps to speed the re-
cording process. In this study, an expert coder (the 3rd author) 
trained a second observer during the first two days. (None of the 
trainee’s data was used from this period.) After the trainee was 
certified, each observer coded independently. A total of 4233 affect 
observations was generated across the 2 classes over 4 days.  

4.2 Learning Outcomes 
This study considers both system internal learning measures (the 
final map score) and system external summative learning 
measures (pre- and post-test scores). The former was calculated as 
the difference between the number of correct and incorrect causal 
relations on each student’s concept map at the end of the study. 
The latter were used to generate a normalized learning gain score 

(This normalized learning gain, calculated as 
𝑃𝑜𝑠𝑡−𝑃𝑟𝑒

𝑀𝑎𝑥−𝑃𝑟𝑒
, accounted 

for the effect of pre-test score on post-test score).  
For our analyses, we divided students (𝑛 = 93) into “Hi” (high per-
formers) and “Lo” (low performers) based on the median value of 
their final map scores (𝑚𝑒𝑑𝑖𝑎𝑛 = 11). Students with a map score 
greater than 11 were labeled “Hi” (𝑛 = 47) and those with a map 
score less than 10 were labeled “Lo” (𝑛 = 42). Data for students 

at the median value (𝑛 = 4) was discarded to maintain the distinc-
tion between the two groups. There was a 16.5-point difference 
between the average Hi group (𝑚𝑒𝑎𝑛 = 19.5, 𝑠𝑑 = 9.4), and Lo 
group (𝑚𝑒𝑎𝑛 = 3, 𝑠𝑑 = 9.5 ) map scores. The difference in the 
normalized learning gains score was also substantial, with a mean 
of 0.36 (𝑠𝑑 = 0.27) for students in the Hi group and 0.17 (𝑠𝑑 =

0.27) for students in the Lo group. 

4.3 Action Log Files 
Students’ cognitive activities in Betty’s Brain were logged and 
classified into five primary action categories based on the Betty’s 
Brain task model [14]. As shown in Table 1, they are: Read, Edit, 
Assess, Note and Conv (Conversation).  
The combination of these actions illustrates the coordination of 
students’ learning and problem-solving activities with corre-
sponding skills and cognitive processes. 

Table 1: Cognitive Activities in Betty’s Brain 

Primary 
Action 

Description 

Read Learner reads resource pages or teacher’s guide 
(information acquisition) 

Edit Learner edits the concept map to teach Betty 
(solution construction) 

Assess Learner has Betty answer a causal question or 
take a quiz to evaluate the state of the map (so-
lution assessment) 

Note Learner takes/edits notes used to track acquired 
information  

Conv Learner converses with one of the agents (Betty 
or Mr. Davis) 

 
These cognitive activities (primary student actions) serve as the 
primary unit of analyses, but more specific actions (e.g., request-
ing/receiving certain kinds of hints, moving elements on the map, 
looking at quiz results, etc.), are also considered.  

4.4 Analyses 
We conducted several analyses. We studied performance by com-
puting the significance of students’ normalized pre-to-post learn-
ing gains. We also computed correlations between student map 
scores and their normalized learning gains to establish the rela-
tionship between students’ performance in the system and their 
overall learnings. 
Next, we compared the time spent by the Hi and Lo students on 
each of the 5 primary activities in the Betty’s Brain system. To 
compare the differences in the affective states between the two 
groups, we computed the relative number of times each of the af-
fective states were recorded for each group and determined how 
the observed affective states were distributed across each of the 5 
primary actions for the Hi versus Lo groups.  
Finally, we used the system log files to study situations where Hi 
and Lo students showed marked differences in delight and bore-
dom to understand the interactions between students’ cognitive 



 

 

 

and affective states. We then compared students’ performance af-
ter observations of four affective states (boredom, delight, confu-
sion and frustration) to see how each affective state was associ-
ated with developments in student performance and learning.  
 

5 RESULTS 

5.1 Pre-Post Learning Gains and Performance 
in Betty’s Brain  

Learners’ pre-test scores, post-tests scores and learning gains for 
multiple choice (MC) and short answer (SA) questions are re-
ported in Table 2. A one-way ANOVA across all students indicates 
significant gains from pre- to post-test (𝑝 <  0.00001) with me-
dium to large effect sizes. We also calculated the Pearson correla-
tion coefficient between learning gains and learners’ final map 
scores in Betty’s Brain. The results show a moderate (𝑟 = 0.2) but 
statistically significant (𝑝 < 0.05, 𝑡 = 1.95) correlation between 
learners’ map scores and learning gains, indicating that the OELE 
provided moderate support to students’ learning of the science 
content. (Some of the learning may be attributed to just reading 
the science resources). 

Table 2: Pre-to-post learning gains - all students (𝒏 = 𝟗𝟑) 

Question 
Type 

Pre-test 
score 
mean 
(sd) 

Post-
test 

score  
mean 
(sd) 

Normal-
ized 

Learning 
Gains 

𝑃𝑜𝑠𝑡−𝑃𝑟𝑒

𝑀𝑎𝑥−𝑃𝑟𝑒
 

mean (sd) 

1-way 
ANOVA  
𝐹-ratio 

(𝑝-value) 

Effect 
Size  

Cohen's 
𝑑 

MC (Max=7) 4.08 
(1.42) 

5.48 
(1.31) 

0.45 
(0.52) 

45.11 
(< 0.0001) 

1.02 

SA (Max=9) 2.28 
(1.79) 

3.5  
(2.29) 

0.16 
(0.31) 

15.24 
(< 0.00015) 

0.59 

Overall 
(Max=16) 

6.35 
(2.93) 

8.98 
(3.25) 

0.26 
(0.28) 

30.64 
(< 0.0001) 

0.85 

5.2 Distribution of Cognitive Activities 
Students’ cognitive activities were categorized into five primary 
actions based on the Betty’s Brain task model [11].  Overall, each 
Hi performer showed a higher count of actions (437 more actions 
on an average) than Lo performers. We inferred the relative time 
spent doing each primary action from system logs. Our analysis 
(Table 3) shows minimal differences in the percentage of total time 
duration for each primary action across Hi and Lo performers. 
However, students in the Hi group spent a significantly higher 
percentage of their total time doing Assess actions (such as evalu-
ating the map) compared to Lo groups (data tested for normality 
using Shapiro-Wilk test, 1-way ANOVA 𝑝 <  0.05 , corrected 
post-hoc using Benjamini-Hochberg procedure). This finding, that 
self-initiated assessment appears to be significantly higher for Hi 
performers, may relate to psychological memory research by Kar-
picke et al. [12], who demonstrate that repeated testing is more 

effective than repeated studying for a later recall of learning con-
tent. 

Table 3: Percentage of total duration spent in each pri-
mary action (Hi vs Lo)  

Category Read % Edit 
% 

As-
sess % 

Note % Conv 
% 

Hi 
(n=47) 

26.6 48.4 12.3 1.4 11.3 

Lo 
(n=42) 

29.6 49.5 6.5 2.8 11.6 

 

5.3 Observations of Affective States 
We analyzed the data collected on students’ affective states by 
performance (Hi vs Lo). The total observations (for both Hi and Lo 
groups) for each affective state were 91 cases of boredom, 238 cases 
of confusion, 118 cases of delight, 3506 cases of engaged concentra-
tion, 207 cases of frustration and 73 cases of other. Table 4 presents 
the proportion of each affective state as a percentage of total affect 
observations for each group. Significant differences between high 
and low performers were observed for two affective states: (1) De-
light was significantly higher for the Hi group; and (2) boredom 
was significantly higher for the Lo group (𝑝 = 0.05 for both de-
light and boredom, adjusted post-hoc for Type 1 error rate using 
Benjamini-Hochberg procedure). 

Table 4: Affective states as percentage of total affect obser-
vations (Hi vs Lo)  

Cate-
gory 

Bore
dom 

% 

Con-
fusion 

% 

Delight  
% 

Engaged 
 % 

Frustra-
tion  

% 
Hi 

(n=47) 
0.83 5.59 3.39 84.71 5.48 

Lo 
(n=42) 

4.31 5.91 1.97 83.63 4.18 

5.4 Distribution of Observed Affective States 
Across Primary Actions 

We next analyze how affective states are distributed across the 
five primary actions (Read, Edit, Assess, Note and Conversation) 
for the high versus low performers, to understand if these differ-
ences are more prominent in certain action contexts. We focus our 
attention specifically on the boredom and delight scenarios (since 
these two affective states showed significant differences between 
Hi and Lo groups). The results are presented in Table 5. 
 
 
 
 
 
 



 

Table 5: Distribution of affective states across the 5 pri-
mary actions (Hi vs Lo)  

Values denote affect instances observed during each action  

Action Cate-
gory 

Bore
dom 

Con-
fusion 

Delight  
 

Engage-
ment 

Frus-
tra-
tion 

Read Hi 7 27 10 329 26 
Lo 10 23 4 200 11 

Edit Hi 6 52 20 888 42 
Lo 24 33 15 618 27 

Assess Hi 2 33 25 345 31 
Lo 6 14 3 156 11 

Note Hi 1 1 2 33 2 
Lo 1 3 3 35 2 

Conv Hi 5 29 29 553 38 
Lo 29 23 7 342 17 

 
Looking at boredom and delight, we observe 5 cases (shaded in Ta-
ble 5) where large differences were observed between Hi and Lo 
groups for a specific action. Boredom was substantially more 
likely among Lo learners during Edit actions (24 vs. 6 instances) 
and Conversation actions (29 vs. 5 instances). Conversely, delight 
was substantially more common for the Hi group than for the Lo 
group during Read actions (10 vs. 4 instances) Assess actions (25 
vs. 3 instances), and Conversation actions (29 vs. 7 instances). 

5.5 Temporal Relations between Students’ 
Cognition and Affect States 

To better understand the interactions between affective states and 
cognitive activities, we considered more specific actions rather 
than just the five primary ones discussed above. We examined the 
temporal ordering of these actions, to determine the common an-
tecedents, if any, to boredom and delight. The results of this case-
by-case analysis are presented in Table 6, which shows differences 
between the Hi and Low groups.  

Table 6: Temporal antecedents for substantial differences 
in boredom and delight  

Case 1: Instances of Boredom during Conv 

Antecedent 
Hi 

(n=5) 
Lo 

(n=29) 
Post-quiz indirect hint 0 5 
Agent progress report (bad) 1 8 
Agent response to query 2  4  
Long MapView or Read 2  11 
Off-task 0 1 

Case 2: Instances of Boredom during Edit 

Antecedent 
Hi 

(n=6) 
Lo 

(n=24) 
Hint→MapView 0 7 
Long period of MapView & MapEle-
mentsMove  

4 8 

Agent progress report (bad) 1 3 

Read multipletimes→MapView 1 1 
ConceptEdit multiple times 0 1 
QuizProvenWrong→MapView 0 3 
Query agent → MapView 0 1 

Case 3: Instances of Delight during Assess 

Antecedent Hi 
(n=25) 

Lo 
(n=3) 

Quiz results correct 23 2 
Quiz explanations correct 2 1 

Case 4: Instances of Delight during Conv 

Antecedent 
Hi 

(n=29) 
Lo 

(n=7) 
Post-quiz hint 6 2 
Encouragement prompt 1 1 
Agent progress report (good) 5 1 
Agent response to query 2 0 
MapView/Read→Quiz 14 1 
Off-task 1 2 

Case 5: Instances of Delight during Read 

Antecedent 
Hi 

(n=10) 
Lo 

(n=4) 
MapView → Read guide 1 1 
Hint → Read 4 1 
Off-task 1 2 
Agent progress report (good)→Read 2 0 
MapEdit→Read 2 0 
 
As shown in Table 6, several of the shaded antecedents seem to 
trigger major differences in the number of instances observed in 
Hi (high performers) versus Lo (low performers). Therefore, we 
study these cases in greater detail below. 
1. Case 1 - Boredom during Conversation: Several antecedents of 
boredom observed during agent conversations are noted in Table 
6. Again, we explore the ones showing large Hi vs Lo differences 
below: 
(i) Post-quiz indirect hint: Lo students were bored in 5 instances 
after receiving indirect post-quiz hints from the mentor agent. No 
such instances of boredom were observed in Hi students. In Sce-
nario 2, we found that Hi students showed more delight instances 
compared to Lo students when they got post-quiz hints from the 
mentor. In contrast, the Lo students showed higher instances of 
boredom (Hi students show none) after receiving indirect hints, im-
plying these students did not find the hints to be useful, or they 
could not use them to overcome their difficulties.  
(ii) Bad progress report by agent: A second instance, of large dif-
ferences between Hi and Lo students, is when the mentor agent 
informs them that they are not making sufficient progress toward 
completing their map. This occurs more for low performers, and 
lack of progress results in boredom for these students. This is a 
situation, where we have to rethink the type of feedback provided 
by the mentor agent, and it may differ for Lo versus Hi performers.  
(iii) Long MapView or Read→boredom, Conv: In this case bore-
dom started with a previous action i.e., long periods of reading the 
resources or viewing the causal map. This boredom was still pre-
sent when the conversation action occurred. For high performers, 
there were two such instances (both due to long reads), and for 



 

 

 

low performers there were 11 such instances (4 due to long reads 
and 7 due to long map views). This result also suggests that scaf-
folds should be designed to help low-performing students regulate 
their affect with more helpful hints, especially when they spend 
too much time on a resource page or just viewing the causal map 
without making changes. 
2. Case 2 - Boredom during Edit actions: The three notable anteced-
ents of boredom in this case are summarized below: 
(i) Hint → MapView is an antecedent of boredom during map edit. 
This case is only seen among Lo performers, with 7 instances in 
Lo performers. The student received a hint from the mentor agent 
and then started looking at the causal map, and then got bored. 
This result appears to follow from [19] in that the gap between 
task difficulty and learner ability leads to boredom. Scaffolding Lo 
students in such a situation can ensure that they are able to utilize 
the mentor’s hint effectively and do not get disengaged from the 
task at hand. 
(ii) Long period of viewing map or moving map elements (no read, 
quiz or link-edit): These are several instances (4 for Hi and 8 for 
Lo) where long periods of viewing the map and moving map ele-
ments on the screen (idle period with no quiz taking or reading or 
link editing in between) were followed by an observed bored state. 
This implies that it may be important to detect unproductive 
phases and to provide adequate scaffolds to help the students be-
come more productive. 
(iii) QuizProvenWrong→MapView: Students got bored when 
viewing their causal map following a quiz result that was graded 
as incorrect. This is more frequent for Lo, most likely because Lo 
students generally have worse quiz results, and not much of an 
idea of how to fix the errors in their map. 
3. Case 3 - Delight during Assess. For both Hi and Lo learners, there 
are only two antecedents to delight during Assess actions: (i) 
when they looked at their quiz results and found that all the an-
swers were correct; and (ii) when the causal explanations to quiz 
answers were correct. The first antecedent shows large differences 
between Hi and Lo groups. It is not surprising that the count of 
such instances was much higher for Hi group, since they were 
more successful in their map building efforts and hence obtained 
higher quiz scores. 
4. Case 4 - Delight during Conversation. The antecedents of delight 
during conversation, as observed from the action logs, can be sub-
divided into different cases. Of these, the cases where large differ-
ences are noted between instances observed in Hi and Lo groups 
are discussed below: 
(i) Post-quiz hint: this is the situation when the mentor agent gave 
a post-quiz hint. These hints may be direct or indirect (discussed in 
Section 3.2). 
It was found that Hi students got delighted more often after re-
ceiving hints from the mentor agent. (We later observe, in Sce-
nario 3, that Lo students show higher instances of boredom fol-
lowing indirect hints.) 
 (ii) Good progress report by agent: Delight also occurs when the 
mentor agent analyzes the state of the students’ maps and praises 
their progress toward generating the correct map from the last 

time the mentor performed this check. Unsurprisingly, these situ-
ations occur more often for the Hi group 
(iii) MapView or Read→Quiz: In this situation, the student starts 
showing delight much before they have even begun a conversa-
tion with an agent. In all instances of this type, the student is de-
lighted when they follow up a map view or read action by taking 
a quiz action i.e., looking at the map or reading resource pages 
and then asking Betty to take a quiz. This delight continues 
through the conversation with her, presumably because the stu-
dent does well in the quiz. In other words, students had figured 
out how to improve their map, and this resulted in delight. The 
delight continued through the quiz taking action.  This case oc-
curred 14 times for the Hi performers and only once for the Lo 
performers.  
5. Case 5 - Delight during Read: 5 antecedents were identified from 
student logs for the scenario where student got delighted during 
reading a resource or the teacher’s guide page in Betty’s Brain. 
Hint → Read is the only case where a large difference between Hi 
and Lo instances was observed. 
Hint → Read: This is when students got delighted upon reading 
resource pages after the mentor agent gave a hint. Hi students 
have more instances of this type, possibly since they were better 
able to connect the hint to causal relations discussed in resource 
pages that the hint mentioned. This finding, along with the 
Hint→MapView antecedent of boredom discussed in Scenario 4, 
give us a very fine-grained insight into student cognition and af-
fect, and call for the design of scaffolds to regulate cognitive and 
affective states in these situations. 
Tracing the temporal activity sequences in the log files that oc-
curred around affect events that were recorded by researchers us-
ing the BROMP protocol provides us with insights on the interac-
tions between students’ activities, performance, and affect. Also, 
one of the most important findings in this section is that an incon-
gruity between the students’ capabilities and the feedback pro-
vided to them by the agents in the Betty’s Brain environment leads 
to unproductive affect states. This happens disproportionately for 
low performers, who are the ones likely to need the most encour-
agement and hints that help them get back to more productive 
behaviors. We discuss this further in the discussion section.  

5.6 Performance Consequents of Affective 
States 

Finally, we explore the immediate influence of affective experi-
ences on student performance in Betty’s Brain by comparing how 
Hi and Lo students edit their causal model in the 3 min interval 
after each affect occurs. Specifically, we compare the number of 
effective (correct) and ineffective (incorrect) link edits in the causal 
model. We chose a 3 min interval for this purpose since two con-
secutive affect observations for a given student had a mean dura-
tion of 3 min.  
Link edit effectiveness, the measure of performance used here, is 
determined by comparing the current state of the student map af-
ter each causal link edit with an expert map embedded in the sys-
tem that is hidden from the student’s view.  



 

The results of this analysis, given in Table 7, show how boredom 
is associated with poorer future performance among both Hi and 
Lo students. After experiencing delight, Hi students make 48% 
more effective than ineffective link edits. But Lo students appear 
to make more mistakes in map building after getting delighted and 
show 70% more ineffective than effective link edits, possibly due 
to careless errors from over-confidence [7, 25]. It appears that Hi 
students can regulate their frustration more productively than Lo 
students, as they do 22% more effective edits than ineffective edits 
after frustration. But frustration is associated with poorer perfor-
mance for Lo students who show 32% more ineffective than effec-
tive links. As for confusion, it appears to be productive for both, 
it is more so for Hi students. This finding is supported by prior 
research on the positive influence of confusion on learning [8]. 
The precedence of confusion to positive performance would also 
harmonize with empirical studies around the co-evolution frame-
work, which predict and find cognitive conflicts to make people 
accommodate their shared knowledge representations in social 
web environments [13]. 

Table 7: Comparing student performance in Hi vs Lo after 
each affective state 

  Preceding 
Affect 

Effective 
Links 

Ineffective 
Links Effective – In-

effective Links 
  N % N % 

HI Confusion 244 61% 15
6 

39% 22% 

 Frustration 258 56% 20
1 

44% 12% 

 Delight 130 66% 67 34% 32% 
 Boredom 40 42% 55 58% -16% 

LO Confusion 144 57% 10
7 

43% 15% 

 Frustration 52 40% 77 60% -19% 
 Delight 9 23% 31 78% -55% 
 Boredom 74 45% 90 55% -10% 

 

6 DISCUSSION AND FUTURE WORK 
In this paper, we analyzed cognitive and affective experiences of 
sixth grade students modeling a complex science topic in the 
Betty’s Brain OELE. Our analyses demonstrate that a combined 
study of students’ activities in an open-ended learning environ-
ment, their resulting learning performance and their recorded af-
fective states can allow for a systematic and detailed investigation 
of the interactions between cognitive and affective processes, both 
important components of their self-regulated learning behaviors, 
within different task contexts in the OELE.  
We found that learners’ cognitive and affective states within an 
agent-based OELE are contextualized by their interactions with 
the environment as well as their performance within the system.  
Our initial results revealed significant differences in the levels of 
delight and boredom between high and low performers. So, we 

identified five specific task contexts in which these affect differ-
ences were most pronounced. Then we determined the cognitive 
processes, which were temporal antecedents to these contextual-
ized affect cases in high versus low performers. However, our 
findings on temporal relationships between cognition and affect 
states do not claim any possible affect-cognition causality.  
One particularly fascinating finding from our temporal analyses 
is how the virtual “mentor” agent’s feedback (in the form of hints 
or reports of progress) appeared to lead to different cognitive and 
affective experiences in high versus low performers. The different 
learner reactions to feedback recalls previous research on learn-
er's beliefs about the nature of learning [9]. 
These findings suggest that it may be valuable to scaffold students, 
especially low performers, based on their cognitive and affective 
interactions in specific learning situations to help regulate their 
SRL processes and create a more productive learning experience. 
The findings in this paper show the value of aligning affect with 
students’ performance and their actions, and then developing the 
ability to track them online, so that personalized hints and posi-
tive encouragements can be provided to help students get back to 
productive learning behaviors.  
A primary limitation of this work was that students’ affect was 
recorded at discrete intervals, therefore, it was not possible to 
track transitions and evolution of their affective states in a fully 
fine-grained manner. On the other hand, recording of students’ 
activities in context, and their performance over time, though dis-
crete and recorded as events in log files, was available in a more 
complete form.  
In future, to enable better alignment between affect, learning ac-
tivities and performance, we plan to develop and deploy affect de-
tectors that will be capable of recording students’ affective states 
at finer-grained intervals. Once this is established we hope to de-
velop temporal models of the interactions between learning activ-
ity and behaviors, affective states and performance, their transi-
tions, and their evolutions over time. This will provide a better 
framework for developing rich learner models of SRL processes, 
which, in turn, will lead to richer frameworks for scaffolding and 
feedback in OELEs. 
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